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Impact statement

At first, we have discussed the role of
hypoxia-inducible factor-1« (HIF-12) and
microRNAs in the acute kidney injury (AKI)
pathophysiology. Then we have summa-
rized the interactions between HIF-1« and
microRNAs reported by AKl-related stud-
ies and concluded their regulatory effects
in AKI process. Finally, we have made a
vision of HIF-1a/microRNAs pathway’s
potential as the intervention target in AKI.
The mini review provides a systematic
understanding of the crosstalk between
HIF-1o and microRNAs in AKI and their
effects on AKI pathophysiology and
treatment.

Abstract

Acute kidney injury (AKI) is a common critical clinical disease that is characterized by a rapid
decline in renal function and reduced urine output. Ischemia and hypoxia are dominant
pathophysiological changes in AKI that are induced by many factors, and the role of the
“master” regulator hypoxia-inducible factor-1o (HIF-1o) is well recognized in AKl-related
studies. MicroRNAs have been found to act as critical regulators of AKI pathophysiological
process. More studies now have reported mutual interactions between HIF-12 and
microRNAs in AKI. Therefore, in this brief review, we look into the mutual regulatory mech-
anisms between HIF-1¢ and microRNAs and discuss their function in the process of AKI.
Recent studies demonstrated that HIF-1 is involved in the regulation of multiple functional
microRNAs in AKI, and in turn, the level of HIF-1a is regulated by specific microRNAs.
However, the role of the interactions between HIF-1o and microRNAs in AKI are controver-

sial, and whether interventions targeting relevant mechanisms could achieve clinical benefits is not clear. Much work remains to
further explore the value of targeting the HIF-1a-microRNA pathway in AKI treatment.
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Pathophysiological process of acute kidney

injury

Acute kidney injury (AKI) is a clinical syndrome induced
by multiple causes, such as ischemia, nephrotoxins,
and sepsis. The main characteristics of AKI include a
rapid decline in renal function, reduced urine output, and
water, electrolyte and acid-base balance disorders.! As a
common complication of critical clinical diseases,® AKI is
easily accompanied with high mortality and poor outcomes
for patients.>* In addition, patients surviving after AKI are
more likely to develop chronic kidney disease® and end up
in renal failure.® Early identification and therapeutic treat-
ment of AKI is a persistent challenge for clinicians.” Since
no targeted therapy can be applied in the treatment of AKI,
it is of high importance to investigate the pathophysiology
of AKI and explore clinical strategies for shortened course
and better prognosis of AKI patients.
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As reported, prerenal causes account for 40-55% of all
cases of AKL®® In addition, sepsis'®"! and some nephrotox-
ic drugs'>" also induce AKI through ischemic mecha-
nisms. Due to the limited capacity of anaerobic glycolysis
and the high oxygen consumption of renal tubular epithe-
lial cells, the kidney is particularly sensitive to ischemia and
hypoxia. Therefore, inadequate delivery of oxygen and
metabolic substrates easily induces or exacerbates tissue
damage in AKL' Models of acute ischemia induced by
acute occlusion of the renal artery are commonly used to
investigate the pathophysiological mechanism of AKI.'>™”
In general, the pathophysiological process of ischemic AKI
can be divided into three stages: initiation, progression, and
repair.14 In the initiation stage, reduced effective arterial
volume leads to kidney hypoperfusion, and hypoxia is
then induced, especially in the boundary area of the renal
cortex and medulla.'® Trreversible mitochondrial damage
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resulting from hypoxia subsequently results in endothelial
damage, tubular epithelial injury, and inflammatory infil-
tration. In the progression process, tubular epithelial cell
injury develops through immunological mechanisms.
Cell injuries include dilation, foamy changes, cell polarity
changes, loss of brush border, basement membrane denu-
dation, shedding of both necrotic and viable epithelial cells
into the tubular lumen, cast formation, and cell death.'®
After the peak of tissue damage, surviving tubular epithe-
lial cells start to dedifferentiate, regenerate and proliferate
under internal and peripheral regulation.'” After the
cytoskeleton and cell polarity are reconstructed, the con-
struction and function of kidney tubules is gradually
restored.”*!

Considering the crucial role of ischemia and hypoxia in
AKI induced by most causes, here, we focus on the regula-
tory mechanism and the regulatory effect of hypoxia-
inducible factor-loe (HIF-1¢), the dominant regulator of
cell biological activity under hypoxia.”> MicroRNAs func-
tion as regulatory mediators of numerous target proteins
by influencing multiple signaling pathways,>?** and
increasing studies now report that the mutual regulatory
mechanism existing between HIF-1o and microRNAs plays
an important role in AKLBY Therefore, in this review, we
examined the crosstalk between HIF-1o and microRNAs in
the progression and repair of AKI.

The role of HIF-1« in the progression and
kidney repair of AKI

HIF-10 is a nuclear protein that was first discovered in cells
cultured in an anoxic environment by Semenza and
Wang.? It is a basic helix-loop-helix (bHLH) transcription
factor that is rapidly degraded during normoxia. Under
hypoxic conditions, HIF-1« is stabilized and accumulates.”®
Upregulated HIF-1a acts as a transcription factor to affect
the expression of target genes and activate various down-
stream signaling pathways, including erythropoietin
production, angiogenesis, energy metabolism, and other
related pathways, to facilitate cell adaptation to the
anoxic environment.?’ In recent years, the protective role
of HIF-1« in renal injury and repair has drawn increasing
attention. With more studies examining HIF-1o-regulation
mechanisms, it is now recognized that the expression and
function of HIF-1u are regulated at the protein, transcrip-
tional and biological activity levels.

Previous studies have found that two classic enzymes
regulate the expression and function of the HIF-1a protein:
prolyl hydroxylase domain-containing protein®® and
hypoxia-inducible factor 1 subunit alpha inhibitor,* both
of which are oxygen-sensitive HIF-1ohydroxylases. Of late,
new findings indicated that phosphorylation and reactive
oxygen species (ROS) are also important mechanisms
responsible for the regulation of degradation and biological
function of HIF-1« under hypoxia.*"**> Other pathways reg-
ulating HIF-1u protein expression have also been reported.
For example, our recent work found that HIF-1o protein but
not mRNA is regulated by microRNA-30c-5p through its
downstream target suppressor of cytokine signaling-3
(SOCS3) in human renal tubular epithelial cells.

Notably, the alteration in HIF-1o mRNA transcription in
AKI remains controversial. To determine whether and how
the transcription of HIF-1a is regulated in AKI over time,
we established a rat model of I/R renal injury and sacri-
ficed the rats at different time points. We observed that
levels of not only HIF-1a protein but also HIF-1o mRNA
changed over time with ischemia and reperfusion (n = 5-6).
Further experiments demonstrated that the transcription of
HIF-1u is regulated by inhibitor of DNA binding 1 (ID1),
which is also a bHLH transcription factor.*® In contrast, no
significant change in HIF-lx mRNA expression was
observed by Conde et al.,>* which may be attributed to a
short hypoxia time and insufficient stimulation. According
to the results of the above studies, we think that HIF-1o
protein instantly accumulates at the start of exposure to
hypoxia because of decreased degradation. If exposure
to hypoxia continues, transcription of HIF-1a mRNA may
be activated to ensure its expression.

A number of studies have demonstrated that HIF-1o
plays an important role in the AKI process by regulating
cell signaling pathways. To test the role of HIF-1a in AKI,
pharmacological and genetic mimics and inhibitors of
HIF-1o were applied in various AKI models: I/R-induced
AKI,*>?® cisplatin-induced AKL**** and rhabdomyolysis-
induced AKL*’ In general, the results revealed that the
stabilization of HIF-1o exerts a protective effect on the
kidney after AKI both in the progression and repair
phases. The main protection mechanisms of HIF-1a in the
progression stage include helping tubular epithelial cells
survive by reducing apoptosis and necrosis,” improving
the cell microenvironment by alleviating macrophage and
inflammatory mediator infiltration,***" and reducing endo-
thelial injury by upregulating vascular cell adhesion mole-
cule 1 expression.”> Other mechanisms by which HIF-1a
reduces kidney injury include inhibiting mitochondrial
signaling pathways* and reducing ROS levels.** Both
mechanisms are closely related to reduced mitochondrial
injury. As more evidence revealed the interactions between
HIF-1o and mitochondrial injury in AKI progression, we
recently performed a series of studies in ischemic AKI ani-
mals and in vitro to further understand the mechanisms
involved. We found that HIF-1a may protect mitochondria
and reduced ROS by promoting mitophagosome formation
and fusion with lysosomes (to be published). In addition,
we observed that HIF-1la may influence the function of
mitochondria by regulating mitochondrial fatty acid oxida-
tion, and more experiments are being carried out to explore
the relevant mechanisms. However, in the repair process,
it is noteworthy that HIF-1a assists impaired kidney repair
through different mechanisms, including inducing tubular
epithelial cells to undergo dedifferentiation-regeneration-
proliferation®® and promoting angiogenesis.*® The findings
of our study that HIF-1a, ID1 (a regulator of cell dediffer-
entiation), and twist (a master regulator of gastrulation and
mesoderm specification) interact in AKI are evidence that
HIF-1a has an effect on tubular epithelial cell dedifferenti-
ation-regeneration® for instance. In addition to the impact
on cell signaling pathways, new evidence has shown that
an important mechanism that HIF-1a affects the AKI pro-
cess is by regulating microRNAs.
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The role of microRNAs in the progression
and kidney repair of AKI

MicroRNAs are noncoding RNAs of approximately 21-23
nucleotides in length that are encoded by specific DNA
regions called “mitron”.*” Under the action of RNA
polymerase II, premicroRNAs of 60-70 nucleotides are
first synthesized. Then, premicroRNAs are transported
out of the nucleus and cleaved by dicer enzymes into
mature microRNAs. RNA silencing processes are the
classic way by which microRNAs regulate the function of
target mRNAs.*® The binding of Argonaute proteins to
microRNAs is required for forming RNA-silencing com-
plexes (RISCs),* which are differentially recognized
by pairing with the 3’-UTR of the target mRNA.? The com-
plementary degree of microRNA-mRNA pairing is strong-
ly associated with regulatory mechanisms of microRNAs.
Perfect complementarity of microRNA-mRNA pairing
activates the endonuclease effect of Argonaute proteins
and results in the degradation of the target mRNA while
incomplete complementarity of microRNAs and mRNAs
results in the blocking of mRNA translation. In humans,
the latter mechanism is dominant, but how RISCs inhibit
different mRNA translation is still unclear.’® Therefore,
microRNAs have been studied by many researches to
figure out their regulatory function.

It is acknowledged that microRNAs play a pivotal role in
regulating diverse pathophysiological processes, such as
inflammation, apoptosis, proliferation, and angiogenesis.
In AKl-related studies, microRNAs were found to contrib-
ute to AKI early diagnosis, AKI development, and renal
repair by regulating these pathophysiological processes.
There are various microRNAs and relevant mechanisms
involved in AKI induced by different causes. For instance,
our previous studies found that the levels of microRNA-
30c-5p and microRNA-192-5p were elevated as early as 2h
after surgery in the urine of both ischemic AKI rats and
cardiac surgery AKI patients.”® We further investigated
the function of these two microRNAs in vivo and in vitro.
The results showed that in addition to its early diagnostic
value, microRNA-30c-5p also exhibited regulatory capacity
in alleviating renal damage and promoting renal repair.
However, we did not observe the same effect of microRNA-
30c-5p and microRNA-192-5p in the cisplatin-induced AKI
model (data not shown), while another microRNA,
microRNA-140-5p, was found to be protective against
cisplatin-induced oxidative stress by activating the NEF-
E2-related factor 2-dependent antioxidant pathway.”
These findings indicate that regardless of the stability of
microRNAs in the samples and species, the expression
and function of microRNAs are sensitive to injuries and
are divergently affected by different pathogenic factors.
Therefore, to ensure the value of a specific microRNA, dif-
ferent experimental AKI models in vivo and in vitro should
be conducted to confirm its effect. When analyzing the role
of target microRNAs, sample type, source of species, and
patient conditions should also be taken into account.

There are many other microRNAs involved in the path-
ophysiology of AKI apart from microRNA-30c*"** and
microRNA-192.5154 Reviewing published literature, we

summarize the important microRNAs involved in the
AKI pathophysiology that have been affirmed in more
than one model or species. The detailed information of
the relevant studies and the roles of microRNAs in AKI
are listed in Table 1. Among these microRNAs,
microRNA-21 was studied comparatively thoroughly. The
results demonstrated that, as an AKI biomarker,
microRNA-21 was not only effective in diagnosing AKI
induced by I/R or cisplatin but was also significantly asso-
ciated with severe AKI and other poor postoperative out-
comes in cardiac surgery patients, indicating its potential as
prognostic markers.”” As a regulator of AKI pathophysiol-
ogy, microRNA-21 was found to be protective in both the
progression and repair phases of AKI. The mechanisms by
which microRNA-21 protects the kidney against pathogen-
ic factors include inhibiting inflammatory mediator pro-
duction,®**®* alleviating apoptosis®®"*> and promoting
renal tubular regeneration and proliferation.®> We believe
these abundant evidence lay the foundation for future
interventions of AKI targeting microRNAs in the clinic.

The crosstalk between HIF-1« and
microRNAs in AKI

As the “master” transcription factor that regulates gene
expression under conditions of hypoxia and ischemia,
HIF-1a was found to be involved in the regulation of
multiple tested and functional microRNAs in AKI.
Recently, microRNA-21, microRNA-23a, microRNA-127,
microRNA-489, microRNA-668, and microRNA-687 were
reported to be HIF-la-dependent in experimental AKI
models. CHIP-Seq and luciferase reporter assays are com-
monly used methods to confirm the interactions of
microRNAs and target genes. Confirmed by CHIP-Seq or
luciferase reporter assays, HIF-lo was found to directly
bind to the promoter region of these microRNAs, except
microRNA-127.”% Regulated microRNAs then influence
the pathophysiology of AKI through downstream signaling
pathways by controlling the expression of the targets. For
example, Jia et al.?” showed that the increased level of
microRNA-21 in kidney tissue and serum exosomes
induced by ischemic preconditioning was mediated by
the binding of HIF-la to the HRE element of the
microRNA-21 promoter region. Elevated microRNA-21
then activated the downstream programmed cell death
protein 4 (PDCD4)/NF-«B signaling pathway and resulted
in a protective effect against sepsis-induced organ injury.
Another group found that the induction of microRNA-
4897 and microRNA-668%" by HIF-1a plays a protective
role in I/R-induced kidney injury by reducing apoptosis
and preserving mitochondrial dynamics, respectively.
Although most of the microRNAs induced by HIF-1a are
considered protective, injurious microRNAs have also been
reported to be induced by HIF-1« in AKI pathogenesis.”
The evidence was recently reported by Bhatt et al. A HIF-1«
transcriptional target, microRNA-687, was found to be
effective in exacerbating kidney injury by facilitating cell
cycle activation and apoptosis, and blocking microRNA-
687 attenuates kidney injury by preserving phosphatase
and tensin homolog (PTEN) expression.
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In turn, HIF-1o was also reported to be regulated by
specific microRNAs. For example, our recent work
showed that microRNA-30c-5p elevation induced by
ischemia or hypoxia resulted in HIF-1a stabilization via
regulating its target gene SOCS3, which is critical for the
antiapoptotic effects of microRNA-30c-5p in protecting
against ischemic and hypoxic kidney injury.® However,
the mechanisms of the detailed interaction between
microRNA-30c-5p and HIF-1a have not been fully under-
stood and should be further investigated. The regulatory
effect of microRNA-21 on HIF-1o was reported by two
studies. One study found that microRNA-21 led to an
increase in HIF-1« after xenon exposure, and the upregula-
tion of HIF-1a was involved in the protection of xenon
preconditioning against I/R-induced kidney injury.*®
In another study, a feedback interaction was discovered
between microRNA-21 and HIF-1o through the PTEN/
protein kinase B (AKT)/mammalian target of rapamycin
(mTOR) pathway.® However, because of the lack of explo-
ration of the genetic regulatory mechanism between
microRNA-21 and HIF-1o, the significance of the two stud-
ies is limited. Another study found that microRNA-210
directly regulates HIF-1o in a systemic and local kidney
hypoxia model. Using a luciferase reporter assay,
microRNA-210 was found to target the 3'-UTR of HIF-1«
mRNA directly in hypoxia. Interestingly, this study
reported a conflicting role of HIF-1a in HK2 cell injury
induced by hypoxia in which microRNA-210 attenuated
hypoxic apoptosis by suppressing HIF-1a activation.*
However, in this study, the authors failed to supply exog-
enous HIF-1u to reverify their findings. Therefore, the role
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Hypoxia

e HIF-1la
stabilization
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-

of microRNA-210-HIF-1o in hypoxia-induced kidney
injury should be reconsidered and more thoroughly stud-
ied. Recently, a study performed by Mathia et al.** showed
that microRNA-22 was induced to repress HIF-lo in
rhabdomyolysis-associated AKI models. The induction of
HIF-1a by anti-microRNA-22 molecules was shown by
assessing renal gene expression profiles. However, despite
HIF-1o. upregulation, microRNA-22 antagonism did not
attenuate AKI severity, most likely due to the activation
of other deleterious genes. In conclusion, the role of the
crosstalk between HIF-1o and microRNAs in AKI is com-
plicated and should be further discussed. The detailed
information of studies exploring the interactions between
HIF-12 and microRNAs in AKI is listed in Table 2, and a
brief outlining of the known crosstalk between HIF-1o and
various microRNAs in AKI is presented in Figure 1.

Clinical potential of targeting the HIF-1a-
microRNA pathway in AKI treatment

Notably, several microRNA-based therapeutics have been
tested in other diseases, such as an antagomir (an inhibitor)
against microRNA-122 for hepatitis treatment’ and a
mimic of microRNA-34 to treat cancer.”® Although similar
clinical trials targeting microRNAs in AKI have not
yet been reported, carrying out the clinical trials above
indicates the clinical prospect of treatments targeting
microRNAs. Despite the important role of the interaction
between HIF-1o and microRNAs in AKI, whether interven-
tions targeting relevant mechanisms could achieve clinical
benefits is not clear. Overall, multiple studies have
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Figure 1. The known crosstalk between HIF-1x and various microRNAs in AKI. In the presence of ischemia and hypoxia, HIF-1 is stabilized and accumulates in

RTECs. Stabilized HIF-1« translocates into nucleus and acts as a transcription factor to bind to the promoter region of target microRNAs (miRs). Under the action of
RNA polymerase I, PremiRs are first synthesized. Then PremiRs are transported out of the nucleus and cleaved by dicer enzymes into mature miRs. Known miRs
regulated by HIF-1« through the aforementioned mechanisms include miR-21, miR-23a, miR-489, miR-668 and miR-687. MiR-21 and miR-23a could be enriched in
exosomes and delivered to target cells. MiR-21, miR-489, miR-668 and miR-687 could affect the expression of target genes through RNA silencing processes with the
participation of Argonaute proteins. The binding of Argonaute proteins to these miRs forms RNA-silencing complexes (RISCs) and the pairing of RISCs with the 3’-UTR
of the targets’ mRNA results in the blocking of target’s mRNA translation. In turn, HIF-1« could also be regulated by some miRs. The miR-30c-5p and miR-21 could
increase the stability of HIF-10, while miR-210 could target the 3’-UTR of HIF-1z mRNA and decrease the translation level of HIF-1a. (A color version of this figure is

available in the online journal.)
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achieved good results in experimental AKI animals by
adopting pharmacological interventions to induce HIF-1a
and its downstream microRNAs. However, the problem of
eliminating heterogeneity among studies exists. Further
studies with larger sample sizes might be useful to resolve
this problem.

Recently, more attention has been paid to microRNAs
inside exosomes. Studies demonstrated that targeting exo-
somes mediated by HIF-la-microRNA pathways may be
beneficial for early AKI treatment®” and improve kidney
outcomes.””> As newly discovered single membrane vesicles
that are secreted by various living cells, exosomes can be
transported to recipient cells and organs, acting as regula-
tors of disease pathophysiology through autocrine, para-
crine and telecrine mechanisms.” Due to the structure of
the complete monolayer membrane, bioactive components
inside the exosomes (MRNAs, proteins and microRNAs)
are stable and less susceptible to the external environment.
Results showed that HIF-la-dependent microRNA-
enriched exosomes played miscellaneous roles when
received by different cells. For instance, Jia et al.’” demon-
strated the potential protective role of HIF-1a-dependent
microRNA-21-enriched exosomes in sepsis-induced AKI,
while Li et al.”? found that HIF-1a-dependent microRNA-
23a-enriched exosomes resulted in macrophage activation
and tubulointerstitial inflammation of uninjured kidneys.
These results indicate the complicated effects of HIF-1a
activation on different effector cells in AKI, and the key
points of intervention should be concentrated on specific
downstream microRNAs in exosomes. In summary, the
therapeutic role of HIF-1a-dependent microRNA-enriched
exosomes should be explored and tested in more AKI
experimental models. In addition, focusing on exosome-
target cell-specific communication may better benefit the
precise treatment of AKI Taken together, these studies
guide innovative HIF-1a-microRNA-based therapeutics of
AKI in the future.

Conclusion

AKIl is a common critical clinical disease. Ischemia and hyp-
oxia are dominant pathophysiological changes in AKI that
are induced by many causes. In experimental AKI models,
HIF-10 and microRNAs are well recognized to act as critical
regulators of the pathophysiology of AKI. Recently, increas-
ing studies have reported that mutual regulation mecha-
nisms exist between HIF-1lo and microRNAs. Studies
have shown that HIF-1« is involved in the regulation of
multiple functional microRNAs in AKI, and in turn, the
level of HIF-lo can be regulated by some specific
microRNAs. However, the role of the interactions between
HIF-12 and microRNAs in AKI is controvertible, and
whether interventions targeting relevant mechanisms
could achieve clinical benefits is not clear. Therefore,
much work remains to further explore the value in target-
ing the HIF-1o-microRNA pathway in AKI treatment.
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