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Abstract
Oxidative stress is an important contributor to the pathophysiology of sickle cell disease.

The pathways involved are complex and interlinked. L-glutamine is an amino acid with

myriad roles in the body, including the synthesis of antioxidants, such as reduced glutathione

and the cofactors NAD(H) andNADP(H), aswell as nitric oxide—so it has therapeutic potential

as an antioxidant. However, the relative impact of L-glutamine on the redox environment in

red blood cells in sickle cell disease is not fully understood, and there are few therapeutic trials

in sickle cell disease. Following the FDA approval of L-glutamine for sickle cell disease, more

research is still needed to understand its clinical effects and role in therapy.
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Introduction

There is increasing evidence for the role of oxidative stress
in the pathophysiology of sickle cell disease (SCD).1

Reactive oxygen species (ROS), such as superoxide, can
be derived non-enzymatically (Fenton chemistry) from
denatured sickle hemoglobin (Hb S) moieties and lipid per-
oxidation or derived enzymatically, such as by the action of
NADPH oxidase. ROS damage red blood cell (RBC)
membranes and decrease cell deformability,2 which may
contribute to the pathophysiology of SCD. Plasma-free
hemoglobin (Hb) and iron chelates are by-products of
hemolysis that can also act as oxidants.3 So, sickle RBCs
(RBCs from individuals with SCD) have higher ROS than
RBCs from healthy controls and are in a vicious cycle of
oxidative stress.4,5 To counteract ROS, mammalian cells
have antioxidant pathways involving reduced glutathione
(GSH), NAD(H), NADP(H) and nitric oxide (NO).
Conceptually, therapeutic targeting of ROS in SCD could
entail the reduction of ROS production (e.g. by induction of
Hb F with hydroxyurea) or augmentation of antioxidant

pathways (e.g. increasing the availability of substrates for
GSH, NADH, NADPH and NO).

Glutamine, an L-a-amino acid, is the most abundant
amino acid in the body.6 Although it is considered a non-
essential amino acid, high RBC turnover due to hemolysis
increases the demand for glutamine, which can make it a
conditionally essential amino acid in SCD.7 The main ther-
apeutic mechanism of glutamine supplementation in SCD
is thought to be its antioxidant effects. However, the rela-
tive contribution of glutamine compared to other amino
acids and antioxidants to the redox environment in SCD
is unknown.8 In addition, glutamine has other metabolic
roles that have received little study in SCD. The FDA
recently approved L-glutamine (EndariVR ) for the reduction
of acute complications in SCD patients (HbSS and Sb0-thal-
assemia) based on two clinical trials.9,10 In this review, we
summarize the relevant pre-clinical and clinical studies of
glutamine. We also pose the unanswered question about
glutamine: whether it is a knight or pawn in the fight
against SCD?

Impact statement
L-glutamine has been recently approved

by the FDA for the prevention of acute

complications in sickle cell disease (SCD).

However, there are many gaps in our

understanding of the biologic role of glu-

tamine and its therapeutic implications in

SCD. This review summarizes the pre-

clinical and clinical evidence that can

inform clinical decision-making and future

research on glutamine therapy in SCD

patients.
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Glutamine as a substrate for the synthesis
of glutathione

Glutathione exists in a reduced (GSH) and oxidized (GSSG)
form. The thiol reductant, GSH, scavenges ROS such as
hydrogen peroxide and lipid peroxides.3,11 GSH can also
interact with Hb to form glutathiol hemoglobin (G-Hb)
which reduces the propensity for sickling.12 There are two
pathways by which reduced glutathione (GSH) is derived:
de novo synthesis which requires the amino acids glycine,
glutamate and cysteine, and regeneration from oxidized
glutathione (GSSG) which requires NADPH (Figure 1).

Under normal oxidative conditions, with ample
NADPH availability, the total glutathione pool is main-
tained in a predominantly reduced state by glutathione
reductase-mediated regeneration of GSH from GSSG.13

However, in the setting of increased oxidative stress, the
de novo synthesis pathway becomes more important due
to the depletion of NADPH and rapid efflux of oxidized
GSSG from RBCs.14 Indeed, sickle RBCs have been shown
to have reduced intracellular GSH concentration15–17

despite higher rates of glutathione synthesis.18 In experi-
ments with normal RBCs exposed to chronic oxidative
stress, the rate of GSSG efflux was higher than the rate of
GSH synthesis. This caused an initial decline in total free

glutathione (TFG) levels until a new sustained steady-state
was achieved at an approximately 10% lower TFG concen-
tration than under normal redox conditions.19 It would be
of interest to know if glutamine supplementation can aug-
ment the de novo synthesis of glutathione to return GSH
levels to normal.

Under healthy conditions, intracellular glutamate
concentration in erythrocytes is well below the Km

(concentration of substrate required to reach half the max-
imum rate of reaction) for glutamate cysteine ligase
(GCL),19 one of the rate-limiting enzymes in glutathione
synthesis13 (Figure 1) so that increasing substrate (gluta-
mate, L-cysteine) availability for GCL could theoretically
increase the de novo synthesis of GSH. The RBC membrane
is impermeable to glutamate20 so that intracellular gluta-
mate has to be derived from either glutamine or by
the transamination of a-ketoglutarate from alanine and
aspartate.

There is evidence that sickle erythrocytes have increased
Vmax (maximum rate of reaction) and decreased Km for Na-
dependent secondary active transport of glutamine into the
cells.21 Further, it has been shown that an increased rate of
glutamine entry leads to increased intracellular accumula-
tion of glutamate.21 Mathematical modeling of experimen-
tal data showed that in normal RBCs exposed to chronic

Figure 1. Glutathione synthesis in the red blood cell. De novo synthesis of reduced glutathione (GSH) is represented in top half of figure and regeneration of reduced

glutathione from oxidized glutathione (GSSG) in bottom half of figure. Glutamine, a-ketoglutarate, and alanine, with smaller contribution from aspartate, are the main

precursors for the intracellular synthesis of glutamate. Glutamine is also used in the synthesis of NADþ. Cysteine, glycine, and glutamate are required for the de novo

synthesis of reduced glutathione and this reaction is catalyzed by glutamate cysteine ligase (GCL), which is the rate-limiting enzyme in this pathway. GSH reduces

hydrogen peroxide by the action of glutathione peroxidases, and in turn is oxidized to GSSG. Glutathione reductase catalyzes the reverse reaction with the use of

NADPH. Reduced NADPH is regenerated from NADPþ by the enzyme glucose-6-phosphate dehydrogenase (G6PD). Abbreviations: ALT: alanine aminotransferase;

AST: aspartate aminotransferase; NADS: nicotine adenine diamide synthetase; GCL: glutamate cysteine ligase; GSH: reduced glutathione; GSSG: oxidized gluta-

thione; GPO: glutathione peroxidase; GR: glutathione reductase; G6PD: glucose-6-phosphate dehydrogenase. (A color version of this figure is available in the online

journal.)
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oxidative stress, increasing the Vmax of glutamine influx by
10% increased intracellular glutamate concentration and
total free glutathione concentration to almost normal
values within 10 days.19 In contrast, other studies have
shown that 89% of erythrocyte glutamate was derived
from alanine aminotransferase (ALT),22 and that a-ketoglu-
tarate availability was more important than glutamine
when RBCs were depleted of GSH.23

Cysteine and glycine can also enter human RBCs via
specific amino acid transport systems.20 Some studies
have shown that intracellular concentrations of L-cysteine
are low in SCD.18 However, other investigators have shown
that the concentration of glycine and cysteine is increased
in sickle RBCs when compared to normal RBCs.24,25 Some
studies have shown that supplementation with L-cysteine
can also increase de novo synthesis of glutathione.19,26,27

Therefore, glutamine is perhaps not the only conditionally
essential amino acid that could modulate the de novo syn-
thesis of glutathione in SCD.

Glutamine as a substrate for the synthesis
of NAD(H) and NADP(H)

Hb S has a higher rate of auto-oxidation than Hb A.28 The
oxidation of Hb S produces methemoglobin, superoxide,
and denatured globin.3 Superoxide, in turn, can generate
hydrogen peroxide, oxygen, and hydroxyl radicals.3,29

Methemoglobin reductases reverse this process using the
cofactor NADH, and to a lesser extent, NADPH.30 Other
antioxidant pathways such as glutathione reductase,
glucose-6-phosphate dehydrogenase (G6PD), 6-phopho-
glucose dehydrogenase, and catalase use the cofactor
NADPH.31,32

The conversion of glutamine to glutamate also results in
the production of NADþ via the action of NAD synthetase
(Figure 1). Sickle RBCs have a decreased NAD redox poten-
tial, demonstrated by a reduced ratio of NADH to total
NAD (NADþ plus NADH) when compared to normal
RBCs.33 The Km of NAD synthetase is higher than the
mean concentration of intracellular glutamine, so that
increasing glutamine delivery to the erythrocyte could the-
oretically increase NAD(H) and NADP(H) production.34 In
a small study, Niihara et al.35 administered oral L-glutamine
to six adult SCD patients and measured an increase in the
total NADH content and NAD redox potential (NADH/
total NAD) after fourweeks.

NADþ is converted to NADPþ by NAD kinase and
NADPþ is reduced to NADPH by the action of glucose-
6-phosphate dehydrogenase (G6PD) (Figure 1). NADPH
is a cofactor for the regeneration of GSH from GSSG as
described earlier. NADPH is also utilized by NADPH oxi-
dase in the generation of superoxide radicals, and this
activity is upregulated in SCD.36,37 Nevertheless, sickle
RBCs have a normal ratio of NADPH to total NADP despite
an increase in the total NADP content.33 Therefore, gluta-
mine supplementation may not affect NADP redox poten-
tial in sickle RBCs.

Glutamine as a substrate for the synthesis of
nitric oxide

Enterally absorbed glutamine is the main source of intesti-
nal citrulline production and supports renal arginine pro-
duction, contributing to 15% of plasma arginine levels
(Figure 2).38–41 Arginine is transported into cells where it
is a substrate for the enzyme nitric oxide synthase (NOS)
that produces nitric oxide (NO). Alternatively, arginine be
converted to ornithine by the enzyme arginase. Nitric oxide
regulates regional blood flow through vasodilation as well
as by suppression of platelet aggregation, secretion of pro-
coagulant proteins, and expression of endothelial cell adhe-
sion molecules.42

NO has both pro-oxidant and antioxidant effects.43

However, given the evidence that SCD patients have
reduced NO bioavailability,44 its beneficial (especially anti-
oxidant) effects in SCD have received the most attention.42

Hemolysis releases arginase, which depletes plasma argi-
nine,45 while cell-free plasma Hb and ROS also scavenge
NO.42 Patients with low arginine-to-ornithine ratios have
increased risk of pulmonary hypertension and early
death.46 In one study, oral glutamine administration in
SCD patients was found to increase plasma and erythrocyte
arginine levels, with the highest increase in arginine bio-
availability (lowest arginine-to-ornithine ratio) occurring in
a patient with severe pulmonary hypertension.47

SCD patients treated with oral L-glutamine for at least
fourweeks had reduced adhesion of sickle erythrocytes to
human umbilical vein endothelial cells compared to
untreated patients.48 The explanation for this finding is
unclear, and it could be related to improvement in the
NAD redox state that reduces inflammation or increased
NO synthesis (both processes could lead to reduced expres-
sion of endothelial cell adhesion molecules). However, fur-
ther studies are needed to corroborate these findings and
understand the mechanisms involved.

Other metabolic roles of glutamine

Glutamine is a substrate for nucleotide synthesis including
purine, pyrimidines, and amino sugars and, as such, it is a
conditionally essential amino acid in catabolic conditions
such as malnutrition and surgery.6 Several studies have
explored the role of glutamine supplementation in critical
illness, surgical recovery, and immune deficiency states
(described in the sections below). As there is high cell turn-
over related to hemolysis and inflammation in SCD, gluta-
mine may have a metabolic (and therapeutic) role that is
separate from its antioxidant effects.

Glutamine also plays a role in the immune systemwhere
immune cells consume glutamine at rates similar to glu-
cose. It is required for a myriad of functions, such as lym-
phocyte proliferation, cytokine production, phagocytic
activity, and bactericidal reactions.49 For example, gluta-
mine enhances superoxide production in neutrophils via
the generation of ATP and the regulation of NADPH oxi-
dase expression.50 The immunomodulatory effects of glu-
tamine have been explored in infection and trauma6,51 but
not in SCD.
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There has also been long-standing interest in the effects
of glutamine on cardiovascular diseases. Glutamine has
been shown to augment endothelial cell production of
ammonia, which triggers heme oxygenase-1 (HO-1) tran-
scription. HO-1 catalyzes the conversion of heme to carbon
monoxide (CO), iron, and biliverdin. CO and biliverdin
(and its derivative, bilirubin) have vasodilatory effects
and improve vascular function by suppressing inflamma-
tion, oxidative stress, apoptosis, and vascular smooth
muscle cell proliferation and migration.52 However, gluta-
mine can also mediate harmful angiogenic responses by
fueling the Krebs cycle and stimulating the proliferation
and migration of vascular cells and deposition of extracel-
lular matrix. This could lead to vascular remodeling that is
associated with conditions such as pulmonary arterial
hypertension.53 Whether this occurs in SCD is unknown.

Intestinal metabolism and pharmacokinetics
of glutamine

Although glutamine is enterally absorbed, intestinal cells
are the major consumers of glutamine in the body. Based on
studies of glutamine absorption under healthy conditions,
a large amount (50–70%) of enterally administered
glutamine is metabolized by mitochondrial-associated

glutaminase (GLS) in intestinal cells (Figure 2).54

However, enterally administered glutamine is still effective
in raising blood concentrations of glutamine in a dose-
related manner.54–56 Fasting, malnutrition, and catabolic
stress can alter the kinetics of absorption in the gut.57

However, glutamine absorption in SCD has not been thor-
oughly studied.

Ziegler et al.56 conducted a series of dose-response stud-
ies of L-glutamine in healthy volunteers. They evaluated
single enteral doses of 0.1 and 0.3 g/kg, intravenous
doses of 0.0125 and 0.025 g/kg/h given over 4 h, and
glutamine-enriched total parenteral nutrition (TPN) with
0.285 and 0.570 g/kg/day administered over five days.
Whole blood glutamine and ammonia levels tended to
rise with the glutamine dose. After an enteral dose, blood
glutamine levels peaked at 30 to 45 min and then declined
steadily to the normal range in 90 to 120min (low dose,
0.1 g/kg) or in 180 to 240min (high dose, 0.3 g/kg).

Morris et al.47 studied the pharmacokinetics of a single
oral dose of 10 g of L-glutamine in SCD patients with ele-
vated tricuspid regurgitant jet velocities, specifically eval-
uating plasma and erythrocyte glutamine and arginine
levels. In five SCD patients, three of whom were tested
with and without glutamine supplementation, plasma glu-
tamine levels peaked 30 min after ingestion, decreased to
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Figure 2. Intestinal and renal metabolism of glutamine. Enteral glutamine is taken up by intestinal cells where some is metabolized as an energy source. Glutamate

generated from glutamine can also be directed into the urea cycle producing citrulline that is released into the bloodstream. Urea generated through this process is

transported to the liver via the portal vein where it is converted into ammonia. Citrulline is taken up by renal tubular cells where it is converted into arginine. Plasma

arginine is used in the synthesis of nitric oxide by the action of nitric oxide synthase (NOS) in red blood cells and endothelial cells. Plasma arginine levels are depleted

by the action of arginase producing ornithine. NO: nitric oxide; NOS: nitric oxide synthase; RBC: red blood cell. (A color version of this figure is available in the online

journal.)
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a plateau by 2h and remained higher than baseline by 8 h.
Plasma arginine concentration peaked by 4 h and remained
elevated through 8 h. Erythrocyte glutamine levels began to
increase by 8h, while erythrocyte arginine concentration
peaked at 8 h. One patient with severe pulmonary hyper-
tension had the greatest improvement in intracellular argi-
nine bioavailability. There are no published reports on
multiple-dose pharmacokinetics of glutamine in SCD.

Pharmaceutical sources of L-glutamine

Pharmaceutical-grade, free glutamine (EndariVR ,
NutrestoreVR ) is available as a powder for oral suspension
or by mixing with food and taken twice daily. EndariVR has
an FDA indication for SCD. Glutamine is also available in
more stable, dipeptide forms such L-glycyl-L-glutamine,
L-arginyl-L-glutamine, and L-alanyl-L-glutamine.52 These
dipeptide forms use the high-capacity human oligopeptide
transporter 1 on enterocytes, which may facilitate a higher
bioavailability of the dipeptide form than free glutamine.58

Perhaps the use of L-arginyl-L-glutamine is suitable for use
in SCD where both arginine and glutamine deficiencies
have been noted.59

Clinical studies of glutamine in non-SCD
populations

Glutamine supplementation has been used to enhance ath-
letic performance for many years. A recent meta-analysis,
however, concluded that there was no effect on aerobic per-
formance, body composition, or immune function, but glu-
tamine supplementation was associated with increased
weight loss and, at high doses (>200mg/kg body
weight), with reduced neutrophil numbers.60

L-glutamine (NutreStoreVR ) has an FDA indication for
short bowel syndrome (SBS) in conjunction with human
growth hormone. In this setting, glutamine supplementa-
tion improved weight gain and energy absorption in SBS,
but its effects were temporary, and the evidence is incon-
clusive for long-term therapy.61

Glutamine becomes conditionally essential in catabolic
states and its supplementation has been studied in trauma,
post-operative recovery, and other critically ill patients.
When studied in surgical ICU patients, glutamine supple-
mentation was found to be safe but did not affect clinical
outcomes such as mortality.62 Before the year 2013, meta-
analyses of randomized trials supported improved clinical
outcomes and a survival benefit associated with glutamine
supplementation in critically ill patients.63,64 However, in a
large multicenter trial published in 2013 (n¼ 1223), gluta-
mine supplementation did not improve clinical outcomes
and was associated with increased mortality in critically ill
patients with multiorgan failure.65 The mechanism for
increased mortality is unclear. Ammonia levels were not
measured in this study, but patients with severe liver dys-
function were excluded. Patients with renal failure were
included in the analysis, which were not part of earlier
studies of glutamine in critically ill patients.66 There is
ongoing debate about the safety and efficacy of glutamine
in critical illness.67

The role of glutamine in cardiometabolic disease has
also been explored.52 Metabolic profiling of large study
cohorts has evaluated the glutamine-to-glutamate ratio
(Gln:Glu) and its association with cardiovascular risk fac-
tors. A high Gln:Glu ratio has been positively correlated
with high density lipoproteins and reduced incidence of
type 2 diabetes mellitus (DM), whereas a low Gln:Glu
ratio is correlated with increased body mass index (BMI),
blood pressure, circulating triglycerides and insulin.68,69

Oral administration of glutamine in patients with type 2
DM improved their glucose tolerance and body composi-
tion.70,71 Further, Ma et al.72 reported the results of two large
prospective studies in the US demonstrating that increased
dietary intake of glutamine and an increased plasma Gln:
Glu ratio were associated with reduced risk of cardiovas-
cular mortality, independent of other dietary or lifestyle
factors.72

Glutamine supplementation was found to be safe in
pediatric oncology patients, but it had no effect on the inci-
dence of oral mucositis or the incidence of infections.73,74

Similarly, in adult oncology and bone marrow transplant
(BMT) patients treated with glutamine, there were no dif-
ferences in clinical outcomes such as incidence of oral
mucositis, hematologic recovery, and length of hospital
stay.75–77 However, one study showed reduced need for
parenteral nutrition and a suggestion of improved long-
term survival with glutamine supplementation.78 In anoth-
er study in pediatric BMT patients, there was a reduced
incidence of infections and bacterial colonization when glu-
tamine was added to parenteral nutrition.79

Clinical studies of glutamine in SCD

Four clinical studies have evaluated L-glutamine therapy in
SCD (Table 1). Niihara et al.35 reported the first clinical
study of glutamine supplementation that assessed the inci-
dence of acute SCD complications. Oral L-glutamine was
administered at a dose of 30 g/day for fourweeks to seven
adults with SCD. The primary outcome was assessment
of the NAD redox potential (ratio of NADH to
NADþþNADH), in which there was a statistically signif-
icant improvement. Six of the seven patients also reported
subjective improvements in chronic pain, reduced daily
opioid use, and improved energy levels. The small
sample size and lack of controls make it difficult to interpret
these results. The study team went on to conduct lager
trials that lead to the FDA approval of EndariVR .

Williams et al.80 studied the effects of 24weeks of oral
glutamine supplementation at 600mg/kg/day on the met-
abolic status of children and adolescents with SCD. They
reported a 6% reduction in resting energy expenditure
(REE) in treated patients when compared to their baseline,
but there was no difference in the total Hb concentration
and SCD-related clinical outcomes were not studied.

Niihara et al.10 conducted two placebo-controlled clinical
trials: a phase II study (n¼ 70)9 and a phase III trial
(n¼ 230). Patients with sickle cell anemia (89.9%) and
sickle-b0-thalassemia were randomized to receive L-gluta-
mine at 0.3 g/kg orally twice daily for 48weeks followed
by a three-week taper (136 exposed for sixmonths,
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109 exposed for at least a year) or placebo (n¼ 111). Both
trials excluded patients with hepatic or renal insufficiency,
recent blood transfusions, pregnancy, or lactation. The
phase II trial failed to show a significant difference in its
primary end point of frequency of sickle cell pain crises
between treatment and control groups. There was a small
but statistically significant decrease in the number of hos-
pitalizations for pain crisis at week 24 (mean number of
hospitalizations was 0.8 in L-glutamine group vs. 1.3 in
placebo group (P¼ 0.036)), but this difference was not
seen at week 48 (P¼ 0.07). There were no statistical differ-
ences in Hb, hematocrit, or reticulocyte count between
treatment and placebo groups. Overall, L-glutamine was
well tolerated. There was one death in the glutamine arm
due to multiorgan failure that was deemed unrelated to
the drug.

The phase III trial by Niihara et al.10 showed a statisti-
cally significant reduction in the median number of sickle
cell crises in the glutamine group versus the placebo group
(3 vs. 4, P¼ 0.005) and a decreased median number of hos-
pitalizations for painful events (2 vs. 3, P¼ 0.005). There
was a statistically significant reduction in other SCD com-
plications (see Table 1). There were again no statistically
significant between-group differences in the Hb, hemato-
crit, or reticulocyte count. Overall, glutamine was well tol-
erated in this study. However, there were two sudden
deaths in the glutamine group; both patients were in their
mid-40s with history of chronic organ failure. Most patients
on these trials were on hydroxyurea therapy. Both trials had
very high withdrawal rates (over 50% in the phase II study,
32% in the phase III study) which make it difficult to inter-
pret their results. The therapeutic effects of L-glutamine in
SCD genotypes other than HbSS and sickle-b0-thalassemia
have not been studied.

Side effects

The main side effects of L-glutamine reported in the SCD
clinical trials were constipation, nausea, headache, abdom-
inal pain, cough, extremity pain, back pain, and chest pain.
Adverse reactions leading to treatment discontinuation
included one case each of hypersplenism, abdominal
pain, dyspepsia, burning sensation, and hot flashes.9,10

The three deaths in L-glutamine-treated SCD patients are
reported above.

Glutamine is involved in nitrogen exchange via ammo-
nia transport between tissues.6 Intestinal cells are efficient
at handling large amounts of enterally administered gluta-
mine. Ammonia released from the activity of intestinal
glutaminase is extracted by the liver before it enters the
bloodstream.57 However, an excess of glutamine can exac-
erbate defects in ammonia metabolism in the setting of
hepatic insufficiency.81 In addition, long-term glutamine
supplementation in non-SCD patients may adversely
affect the homeostasis of other amino acids as well.82

Patients with renal and hepatic impairment were excluded
from the clinical trials of glutamine in SCD that lead to the
FDA approval.9,10 Therefore, clinicians should be cautious
when administering L-glutamine to SCD patients with
renal and hepatic impairment until these populations are
studied further.

Therapeutic role in SCD

There is increasing evidence to substantiate an adverse role
of oxidative stress in the pathophysiology of SCD, and it is
reasonable to suspect that antioxidants could be beneficial.
However, given the complexity of the redox environment
and the multitude of intermediates in interlinked path-
ways, it will require pre-clinical and large clinical trials to

Table 1. Clinical studies of glutamine in sickle cell disease.

Study Population/study design Glutamine dose Main findings

Niihara et al.35 7 SCD patients

Age: 19–60 years

Open-label, uncontrolled

30 g/day administered

orally in three divided

doses for 4 weeks

NAD redox potential (ratio of NADH to NADþþNADH) increased from

47.2� 3.7% to 62.1� 11.8% (P< 0.01)

NADH level increased from 47.5� 6.3 to

72.1� 15.1 nmol/mL RBC (P< 0.01)

6 of 7 patients reported improvement in chronic pain and reduced daily

narcotic use

Williams et al.80 27 SCD patients

Aged: 5.2–17.9 years

Open-label, uncontrolled

600 mg/kg/day orally

for 24 weeks

6% reduction in median resting energy expenditure compared to

baseline (P¼ 0.053); greatest reduction in patients with less than 90%

ideal body weight (P< 0.03)

Niihara et al.9 81 SCD patients

Aged: 9–58 years

Randomized 1:1 to

glutamine or placebo

0.3 g/kg orally twice

daily for 48 weeks

Mean number of painful crises was 2.5 and 5.5 for L-glutamine and

placebo groups respectively (P¼ 0.060) at week 24

Mean number of hospitalizations was 0.8 and 1.3 for L-glutamine and

placebo, groups, respectively (P¼ 0.036) at week 24.

Niihara et al.10 230 SCD patients

Aged: 5–58 years

Randomized 2:1 to

glutamine or placebo

0.3 g/kg orally twice

daily for 48 weeks

Median of 3 pain crises in the glutamine group and 4 in the placebo

group (P¼ 0.005)

Median of 2 hospitalizations in the glutamine group and 3 in the placebo

group (P¼ 0.005)

Reduced number of SCD complications in glutamine group compared

to placebo: fewer cumulative days in the hospital (6.5 vs. 11,

P¼ 0.02), prolonged time to first pain crisis (84 vs. 54 days, P¼ 0.02),

and second pain crisis (212 vs. 133, P¼ 0.03), reduced episodes of

acute chest syndrome (P¼ 0.003)

SCD: sickle cell disease (HbSS and sickle-b0-thalassemia genotypes only).
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find the optimal antioxidant(s), if any, for SCD. Whether
glutamine fulfills this role remains to be determined.
Although there is sound biologic rationale based on exper-
imental data that glutamine contributes to the synthesis of
GSH, its relative importance compared to other amino
acids such as a-ketoglutarate and L-cysteine has not been
established, especially in SCD. Although the effects of glu-
tamine on surrogate markers of oxidative stress such as
NADH/NAD ratio have been studied, direct measurement
of RBC ROS and RBC lifespan has not been conducted. In
addition, glutamine has other metabolic roles in protein
and nucleotide synthesis that are poorly studied, if at all,
in SCD.

There is conflicting evidence on the role of glutamine in
critical illness and concerns about its association with
increased mortality in patients with multiorgan failure. In
fact, many clinical trials conducted over multiple years in
critical care centers have been unsuccessful in reaching a
consensus. The SCD population may be less heterogenous
than critical care patients, making it easier to study the
effects of glutamine. However, unlike hydroxyurea, there
are no validated clinical biomarkers to assess response to
glutamine therapy. In addition, multi-dose pharmacokinet-
ic studies have not been conducted to establish the optimal
dosing regimen. Whether a dipeptide formulation of
glutamine, such as L-arginyl-L-glutamine, has improved
bioavailability and greater benefit than L-glutamine
should also be investigated.

A reasonable line of inquiry would be to investigate the
additive benefit of L-glutamine to optimized hydroxyurea
therapy. As the proposed mechanism of action and toxicity
profile of glutamine is different than hydroxyurea, the com-
bination of these drugs may be theoretically advantageous
and safe.83 Additionally, for the minority of patients who
do not tolerate hydroxyurea, L-glutamine may be a reason-
able alternative. However, L-glutamine therapy comes with
a significant cost: approximately $3000 per month for
adults and $1000 per month for children, which is
20-times more expensive than hydroxyurea.84

Another factor to consider is medication adherence,
which is a vital issue for patients with chronic illnesses
like SCD.85,86 The necessity of twice daily administration
of powdered L-glutamine may lead to poor adherence in
clinical trials as well as clinical practice. Moreover, the addi-
tion of L-glutamine to hydroxyurea therapy may adversely
affect adherence to hydroxyurea. Given that multiple stud-
ies show a survival benefit for adults and children who take
hydroxyurea, the addition of any intervention without
established survival benefit that might, even if unintention-
ally, reduce adherence to hydroxyurea should be
considered thoughtfully.

Conclusion

The randomized trials of glutamine by Niihara et al.9,10 and
the availability of a new therapy for SCD are a welcome
advance. However, larger and longer-term studies are
required to assess the impact of glutamine on many
clinically relevant outcomes, including mortality.
Additional studies are required to establish an optimal or

individualized dosing regimen, identify biomarkers of
response to glutamine therapy, and describe its effects in
sickle-hemoglobin C disease and other SCD genotypes.
Currently, there are too many unanswered questions to
know if glutamine is a knight or but a pawn in the thera-
peutic fight against SCD.
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