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Abstract
Through the gut-brain axis, the microorganisms that reside in the gut are able to exert an

important influence on the central nervous system. Preclinical and clinical evidence sug-

gests that alterations in the composition of the gut microbiota are involved in gastrointes-

tinal and neurological disorders. During critical neurodevelopmental time periods, such as

the early life, changes in gut microbial composition may detrimentally impact neurodevel-

opment, and subsequently lead to neurological disorders in later life. The finding that

neurological disorders persist suggests that epigenetic modifications may be involved in

response to disruption of the microbiota-gut-brain axis. Through establishing epigenetic

modifications, environmental (microbial) signals can interfere with the cellular gene

expression patterns. These long-lasting modifications exert their effects even when the

initial stimulus is removed. In this review, we discuss the pathways that provide bidirectional

communication between the microbiota and the central and peripheral nervous systems.

Furthermore, we summarize how these microorganisms in the gut exert their influence

through changing the epigenome in the brain-gut axis.
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Introduction

Substantial amounts of epidemiological evidence exist for
an association between neurological and gastrointestinal
(GI) disorders. For instance, patients who suffer from
anxiety issues, major depressive disorder (MDD), or
autism spectrum disorder (ASD) often also report GI com-
plaints. Vice versa, GI disorders, such as ulcerative colitis,
Crohn’s disease, and irritable bowel syndrome (IBS), are
often co-morbid with anxiety issues and/or depression.
These epidemiological findings introduced the concept of
the “gut-brain axis,” an extensive communication network
that links the GI tract with central cognitive and emotional
centers within the central nervous system (CNS).1 In this

way, the brain can influence gut epithelial transport, intes-
tinal permeability, GI motility, and visceral sensitivity.
Concomitantly, signals arising from the gut are capable of
triggering neurodevelopmental and neurobehavioral
effects on the brain.2,3 This bidirectional influence is funda-
mental in the maintenance of homeostasis in both the
GI system and the brain. The numerous microorganisms
living in the gut, belonging to different classes of viruses,
archaea, protozoa, bacteria, fungi, and eukaryota, are a
long-overlooked component of the gut-brain axis.4 The
presence of these microorganisms is essential for gut
homeostasis. However, these microorganisms also undeni-
ably influence central and peripheral neural processes,
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neurodevelopment, and behavior.5–8 Patients with GI
and/or neurological disorders often show a differently
composed gut microbiota when compared to healthy con-
trols. In these patients, often overall microbial diversity
is reduced, certain microbial strains are over- or underrep-
resented, whereas other strains may be completely absent,
shifting the balance towards an “unhealthy”microbiota.9–14

Transfer of the fecal microbiota from patients with IBS or
MDD to germ-free (GF) animals also transferred IBS-like
visceral pain and depressive-like behavior to these ani-
mals.15,16 These studies showed the importance of the
microbiota to induce behavioral alterations, but also
indicated that the transient nature of the microbiota can
be exploited. Restoring a healthy microbiota may amelio-
rate neurological maladaptation. In animals and in IBS-
patients, supplementing the diet with pre- and probiotics
ameliorated visceral hypersensitivity.17–20 Similar to IBS,
certain probiotics, prebiotics and antibiotics are able to
ameliorate depression-like behavior in animals and
patients.21–25 In our current understanding of the
microbiota-gut-brain axis, it is thought that detrimental
changes in the composition of the gut microbiota that
occur during critical developmental time windows,
can negatively impact neurological and/or behavioral
development.26 Interestingly, although these microbiota
composition changes are often transient, they can induce
long-lasting changes in the gut-brain axis. An underlying
mechanism through which transient changes can be

embedded for the long-term, is through modulating
the epigenome of the nervous system. Recent studies are
uncovering that epigenetic changes, regulating long-
term changes in gene expression, in the gut-brain axis per-
petuate transient changes in the gut microbial composition
(Figure 1).

Communication in the microbiota-gut-brain
axis

The communication in the microbiota-gut-brain axis is
bidirectional and consists of many direct and indirect path-
ways. Interestingly, through its presence in the gut, the
microbiota influences all of these routes of communication.
As a result, the microbiota can influence CNS activity and
certain CNS activity can alter microbial composition and
activity. Direct communication in the microbiota-gut-brain
axis occurs through the nervous system. The gut is inner-
vated by the enteric nervous system (ENS), the sympathetic
and parasympathetic branches of the autonomous nervous
system (ANS), and sensory nerves of the CNS.27

Information from the ENS is transmitted via the vagus
nerve via the nucleus of the tractus solitarius to the dorsal
motor nucleus of the vagus in the medulla of the brainstem.
Visceral sensory nerves in the gut transmit afferent signals
via the spinal cord to the CNS. In the brain, afferent signals
are relayed to different sites, where processing occurs and
efferent signals back to the gut generated.28 The microbiota
interacts directly with these afferent neurons through the
release of neurotransmitters in the gut that can stimulate
intrinsic primary afferent neurons in the gut, or directly
stimulate the extrinsic primary afferent neurons in the
vagal, pelvic, and spinal afferent nerves: acetylcholine
and gamma aminobutyric acid (GABA) are produced by
Bifidobacterium and Lactobacillus species, while serotonin,
dopamine, and norepinephrine (NE) are produced by
Escherichia, Streptococcus, and Enterococcus species.7,29 Vice
versa, microbial populations, that express receptors for
GABA, NE, and serotonin, are able to pick up neurotrans-
mitters released frommotor or efferent signals coming from
the brain. In this way, CNS activity can directly regulate
microbial activity in the gut.30–33

Through local interactions with neurons, the microbiota
modulates gut homeostasis. In addition, the microbiota is
an important source for certain neurotransmitters and neu-
rotransmitter activity, and its influence extends far beyond
the gut environment. For instance, the biosynthesis of
serotonin in the enterochromaffin cells is controlled by
indigenous spore-forming bacteria. In absence of these bac-
teria, the release of serotonin in the GI tract is significantly
lowered.34 Furthermore, serotonin concentrations in the
serum and the certain brain regions, such as the hippocam-
pus, are decreased.35 Moreover, the presence of the gut
microbiota is essential for normal neurotransmitter turn-
over rate in the CNS. In the hippocampus, frontal cortex
and striatum of GF animals, the turnover rates of noradren-
aline, dopamine, and serotonin are increased.30,36,37 Hence,
neurotransmitter bioavailability, neurotransmitter turn-
over rate, and normal microbial-neuronal interactions are
essential for the communication between the CNS and the

Figure 1. Microbiota–gut–brain axis. The bidirectional communication between

the gut and the brain exists of multiple pathways. Epigenetic changes, under

influence of the gut microbiota, occur both in the gut as well as in the brain.
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gut microbiota. Disruption of the microbiota composition
may affect all of these pathways: alterations in microbiota-
neuron interaction and signal transmission in the CNS, may
eventually impact CNS functionality.38,39

Indirect communication in the microbiota-gut-brain axis
involves neuroendocrine systems, the immune system,
and secretion of metabolites. Alterations in these pathways
often change the gut environment or directly influence
microbial composition. The major neuroendocrine system
involved in stress-induced GI physiology, is the
hypothalamic-pituitary-adrenal (HPA) axis. Under stress-
ful conditions, activation of the HPA axis increases levels
of circulating cortisol (CORT) in the body.40 The stress hor-
mone CORT directly and indirectly influences gut physiol-
ogy by changing the activity of regulatory regions in the
brain, immune cells, smooth muscle, and gut epithelial
cells.41–43 In adult rodents, psychological or social stress
activated the HPA axis, which altered gut physiology and
microbiota composition.44–46 Interestingly, the gut micro-
biota is necessary for the correct formation of the HPA
axis. GF mice show higher levels of HPA axis activity
(higher basal CORT production or exaggerated CORT pro-
duction under stress) when compared with controls. In GF
mice, gut colonization with Bifidobacterium infantis normal-
ized the exaggerated HPA response to restraint stress,
whereas colonization with the Escherichia coli further exac-
erbated the HPA response to restraint stress.47 Additional
evidence in rhesusmonkeys showed that prenatal exposure
to CORTchanged the microbiota profile of the newborns.48

Postnatal premature activation of the HPA axis due to
maternal separation stress, predominantly reduced the
number of Lactobacilli, a strain of bacteria that is important
for normal functioning of colonic mucosa. The reduction in
these beneficial microorganisms could have compromised
colonic mucosal function, and made themmore susceptible
to opportunistic bacterial infections.49

Although our gut microbiota consists of many beneficial
microorganisms, it also harbors detrimental organisms.
Hence, our immune system needs to be primed to only
respond to the presence of detrimental microorganisms.
Several bacterial strains produce short-chain fatty acids
(SCFAs) which can be taken up by circulating monocytes.
In these immune cells, SCFA favors the production of anti-
inflammatory cytokines and prostaglandin E2.42 Moreover,
SCFA induces a shift towards an anti-inflammatory pheno-
type: SCFA administered to a murine macrophage cell
line (RAW264.7) not only prevented the production of
pro-inflammatory cytokines (IL-1b, TNF-a, IL-6) after
lipopolysaccharide (LPS) exposure, but also increased
anti-inflammatory cytokine (IL-10) production.50 This
shift to an anti-inflammatory state in the gut is also
known to modulate neuronal development.51

Substantial evidence indicates that microbial SCFAs also
regulate enteric glial and neuronal functionality.52 For
example, enteric neurons express the type 2 monocarbox-
ylate transporter (MCT2) or other G protein-coupled recep-
tor that can interact with SCFA butyrate. As a result,
butyrate activates pathways that ultimately elevate choline
acetyltransferase concentrations in enteric neurons. Other
SCFAs interact with the sympathetic nervous system

through binding the G protein-coupled receptor 41
(GPR41) on these neurons. This interaction generates
action potentials and results in the release of NE from the
sympathetic nerve terminals.53–55

In summary, through direct or indirect interaction with
neurons, the microbiota can modulate or alter the colonic
signals the brain receives. Moreover, the microbiota can
influence how the CNS processes this and other incoming
information and the generation of top-down signals.
Signals originating from the brain can alter gut motility
and permeability, which can change the gut environment
and, in this way, influence the composition of the
microbiota.

Emerging role of epigenetic reprogramming
in the microbiota-gut-brain axis

Histone tail modifications, DNA methylation, and non-
coding RNAs are the most known and best studied epige-
netic mechanisms. Through epigenetic modifications,
developmental or environmental signals are integrated
into the cell’s gene expression profile, without interfering
with the DNA sequence itself. Often, these modifications
do not need the external signals to remain in place, and lead
to stable long-term changes in gene expression patterns.
As the microbiota is part of the environment, it can interact
with the host’s genome by modifying the host’s epigenome
in the gut-brain axis. In this way, the absence or changes
in microbiota composition can establish long-lasting epige-
netic modifications that can ultimately affect behavior.
Although epigenetic modifications are usually long-
lasting, they do not need to be permanent. Therefore, as
epigenetic modifications are reversible, they can be
changed at later stages. As a consequence, epigenetic mod-
ifications serve to adapt or fine-tune the cellular gene
expression profile to environmental signals. Interestingly,
restoration of the gut microbiota during critical neurodeve-
lopmental periods or supplementation with pre- or probi-
otics has beneficial influences on gene expression and
behavior. These beneficial changes might have been
caused through modulation of the host’s epigenome.

The epigenome is influenced by the gut
microbiota

Several metabolites, produced by the gut microbiota, can
directly or indirectly interact with the host’s epigenome.
Bacteria from the genera Eubacterium, Clostridium, and
Butyrivibrio are a major source for the SCFA butyrate,
which can act as a histone deacetylase (HDAC)-inhibitor.
Butyrate receptors are expressed by multiple cell types
throughout the body.56 For instance, the colon, liver, and
white adipose tissue of GF mice showed different histone 3
and histone 4 tail acetylation and methylation patterns,
when compared to control animals. The epigenetic changes
were reversed after colonization with a normal microbiota,
or after supplementation of the diet of the GF mice with
butyrate and other SCFAs.57 Evidence also suggests that
butyrate can cross the blood–brain barrier and change the
epigenome in the CNS. In a rat model of depression,
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chronic butyrate treatment inhibited histone deacetylases
in the brain, which lead to increases in BDNF and amelio-
ration of the phenotype.58 The presence of certain bacterial
species in the gut, such as Helicobacter pylori can change
the expression levels of epigenetic enzymes. The presence
of Helicobacter pylori in the gut increases the CpG-
methylation in the promoter region of O6-methylguanine
DNA methyltransferase, which ultimately decreases the
expression of this DNA methyltransferase in the cells of
the gastric mucosa.59 Other bacteria are even capable of
secreting proteins with epigenetic properties. Rv3423.1,
derived from Mycobacterium tuberculosis, functions as a his-
tone acetyltransferase.60 Moreover, Mycobacterial Rv1988
is capable of methylating histone tails.61 Apart from direct-
ly interfering with the host’s epigenome, the gut microbiota
also exerts an indirect effect as an important source for
essential substrates and cofactors for epigenetic enzymes.
Acetyl-CoA and S-adenosyl-methionine, produced by gut
bacteria, are indispensable substrates for histone acetyla-
tion and DNA methylation. Furthermore, the gut micro-
biota regulates the absorption and secretion of essential
enzymatic cofactors such as zinc, iodine, cobalt, selenium
in the gut. In this way, the microbiota further exert its con-
trol over the epigenome.62

The microbiota influence gene expression

Recent studies have established that the presence of the gut
microbiota is essential for normal gene expression in the
CNS. Especially regions involved in the development of
mood and neurological disorders, such as the amygdala
and hippocampus, are dependent on the presence of gut
microbes for their normal gene expression. Often, genes
involved in neurodevelopment, mood and anxiety disor-
ders, fear learning and extinction, and stress responses
are affected by changes in the microbiota. The hippocam-
pus of GF mice showed a disturbed transcription profile of
synaptic plasticity genes, serotonin, BDNF, NMDA, the
NMDA receptor NR2B, and the glucocorticoid receptor.22,37

Interestingly, some of these changes occurred specifically in
the dentate gyrus of the hippocampus of GF female mice.63

In the amygdala of GF mice, the expression of genes related
to neuronal activity, synaptic plasticity and (cholinergic)
transmission, and immediate early genes was notably
increased.64,65 Experimental evidence found that supple-
menting the diet of mice with Lactobacillus rhamnosus
changed the transcription of the GABAB1b subunit: expres-
sion was increased in cortical brain regions, but decreased
in the amygdala, hippocampus, and locus coeruleus. In the
same mice, the hippocampus revealed increases in
GABAAa2 subunit expression, whereas in the amygdala
and prefrontal cortex, expression was reduced.39

The microbiota influences gene expression
through epigenetic reprogramming

The epigenome in the microbiota-gut-brain axis has
not been widely studied. However, recent advancements
in this field are starting to unravel the involvement
of epigenetics. In the aforementioned studies, the

wide-spread dysregulated mRNA expression in the amyg-
dala of GF mice was accompanied by a vast network of
dysregulated miRNA expression, which accounted for the
observed behavioral changes.65,66 Specifically, GF mice
showed decreases in miR-182-5p and miR-183-5p, which
are involved in amygdala-dependent stress and fear-
related outputs, and decreases in miR-206-3p, which
is known to alter BDNF expression.66 Colonization on
post-natal day 21 partially restored miRNA expression
patterns, which only partially normalized impaired
amygdala-dependent fear memory recall. miRNA expres-
sion was also dysregulated in the hippocampus of GF mice,
which led to changes in gene expression related to axon
guidance. During the development of the nervous system,
axon guidance is necessary to locate and recognize appro-
priate synaptic partners. Inappropriate wiring of neurons
in GF mice may underlie behavioral deficits in GF mice.
As with other studies, colonization of the gut of adolescent
mice did not reverse behavioral deficits.67

Apart from the CNS, other components of the gut-brain
axis are also epigenetically affected by the presence of the
microbiota. For instance, GF mice fail to develop immune
tolerance and lack the intestinal barrier integrity that is
commonly associated with the presence of gut microbiota.
Especially the absence of Lactobacilli and Bifidobacteria is
important, as these microorganisms are the major source
of butyrate. By inhibiting HDACs, butyrate suppresses
nuclear NF-jB activation, upregulates PPARc expression,
and decreases IFNc production in the residing gut
immune cells, promoting an anti-inflammatory gut envi-
ronment.68,69 This growing evidence suggests that the
microbiota can modulate the epigenome in the gut-brain
axis. In this bidirectional communication axis, the opposite
should also be true: epigenetic changes in the gut-brain axis
should also have an impact on the microorganisms residing
in the gut. To date, direct proof is lacking, but indirectly the
pieces of the puzzle can be put together. For instance, in our
laboratory, we showed that chronic psychological stress in
rats induces epigenetic changes in the amygdala, an impor-
tant regulator of the HPA axis, which lead to visceral hyper-
sensitivity.70 The visceral phenotype could be rescued
by infusing HDAC inhibitors directly into the amygdala.
Other studies showed that the same stressor affected
the microbiota, which was an underlying cause for visceral
hypersensitivity.71 Interestingly, supplementation of the
diet with butyrate-producing Lachnospiraceae reversed vis-
ceral hypersensitivity in stressed rats.46 Whether this
HDAC inhibitor also was able to reach the amygdala to
prevent modulation of the epigenome remains to be inves-
tigated. The effects of psychological stress extend far
beyond the brain, and are also known to influence inflam-
matory markers through silencing of the NLRP6 gene.72

The shift towards a pro-inflammatory phenotype in
the gut and visceral hypersensitivity was attenuated by
administration of Clostridium butyricum, which prevented
the gene silencing of NLRP6.73 Animal models of early
life stress, such as maternal separation, offer the possibility
to interfere with critical (neuro) developmental models.
Therefore, the maternal separation model has been
widely used to study the disorders of the gut-brain axis
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as it leads to increases in gut permeability, gut inflamma-
tion, visceral sensitivity, and induces HPA axis hyperreac-
tivity, depressive-like behavior, anxiety, and fear.74–76 These
functional and behavioral changes are mediated by
changes in DNA methylation and histone modifications
at key genes in the CNS.77–82 These epigenetic changes
are key in the long-lasting behavioral changes and are inter-
esting targets for reversal of the observed phenotypes.
Visceral hypersensitivity was ameliorated after intrathecal
injections of HDAC inhibitors, whereas dietary methyl
donor supplementation rescued depressive-like behav-
ior.75,83 Concomitantly, maternal separation also changes
the composition of the microbiota of separated pups.84,85

Interventions with pre- or probiotics, during neonatal
exposure to maternal separation, were able to attenuate
the effects of maternal separation on neurotransmitters in
the hypothalamus, intestinal cytokines, anxiety behavior,
prefrontal cortex-mediated fear regulation, or visceral
hypersensitivity. Prebiotic interventions after weaning
also showed to be effective in attenuating visceral hyper-
sensitivity. Interventions that aimed to restore gut barrier
function also normalized microbiota composition.86–90

Summary and conclusions

The microbiota-gut-brain axis is a critical component for
GI and neurological functionality, and disturbances in one
component can easily affect the other components. The host
interacts with its microbiota through the release of neuro-
transmitters or other mediators in the gut, shifts in inflam-
matory status, and gut environment that can directly
or indirectly impact the composition of the microbiota.
Concurrently, neurotransmitters or metabolites from the
microbiota interact with neurons in the ENS or nerve end-
ings of the PNS, modulate inflammatory cells in the gut,
but also extend their influence up to the HPA axis or
neurotransmitter turnover in the brain. In this way, the
microbiota can influence neurodevelopment and behavior
and lead to changes in anxiety, depression, and pain per-
ception. In recent years, it has become more apparent that
the presence of the gut microbiota is essential for epigenetic
regulation in the gut-brain axis. Much of the most exciting
work has come fromGF animals that exhibit a dysregulated
epigenome in the brain, that contribute to neurobehavioral
alterations. Colonization of GF animals or supplementation
with pre- or probiotics are proven strategies to ameliorate
neurobehavioral defects likely through altering the epige-
nome. Animal models of adult stress or early life stress
clearly indicate that epigenetic modifications play an
important role in the gut-brain axis. Reversal of these epi-
genetic changes often rescues the phenotype. Other studies
have shown that the same stressors change the composition
of the gut microbiota. Again, supplementation with pre- or
probiotics normalizes the gut microbiota composition and
often attenuates the phenotype. However, evidence linking
interventions in the epigenome in the brain and alterations
in the microbiota, or vice versa, is still lacking. In order to
achieve the optimal desired effects, evidence suggests that
the microbiota need to be modulated during critical neuro-
developmental periods. Taken together, accumulating

compelling evidence suggests that the gut microbiota
form a gateway to alter the epigenetically mediated patho-
physiology of gut-brain disorders.
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