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Abstract
Sodium fluoride (NaF) is used in water fluoridation and dental products such as mouth

rinses and toothpastes. Resveratrol is a natural polyphenol with antioxidant and anti-

inflammatory properties. The present study was carried out to evaluate the toxicity of

NaF and the protective role of resveratrol in Drosophila melanogaster. For longevity

assay, Harwich strain of D. melanogaster was treated with NaF (0, 10, 30, 50, 70 and

90mg/kg diet) throughout the lifespan and daily mortality recorded. Then, flies were

again treated with similar doses of NaF for sevendays to evaluate survival rate and oxida-

tive stress markers. Thereafter, 60mg resveratrol/kg diet was selected to determine its

ameliorative role in NaF (70mg/kg)-induced toxicity in flies: Group A (control), Group B

(60mg resveratrol/kg diet), Group C (70mg NaF/kg diet), and Group D (resveratrol,

60mg/kg diet)þNaF, 70mg/kg diet). Thereafter, Glutathione-S-transferase (GST), catalase

and acetylcholinesterase (AchE) activities, as well as total thiol (T-SH), nitrites/nitrates and

hydrogen peroxide (H2O2) levels were determined. The results showed that resveratrol

prevented NaF-induced elevation of H2O2 and nitrites/nitrates levels, as well as catalase activity. In addition, resveratrol restored

NaF-induced inhibition of GST and AChE activities and depletion of T-SH content (P< 0.05). Conclusively, resveratrol offered

protective benefit against NaF-mediated toxicity in flies due to its antioxidant and anti-inflammatory properties.
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Introduction

Fluoride is a trace element that is widely distributed in
nature. Its compounds are commonly used in the produc-
tion of fluoridated dental products and drinking water. The
main sources of human exposure to fluoride include drink-
ing water, food, toothpastes, mouth rinses, drugs, fluoride
dust, and fumes released from industries.1,2 Indeed, fluo-
ride is considered an important environmental pollutant
that poses serious health risks to plants, animals, and
humans globally.3 Excessive exposure to fluoride is well
known to cause fluorosis—a condition that results from

cumulative poisoning of soft tissues such as muscles,
liver, and nervous system.4 Several mechanisms by which
fluoride elicit toxicity include increased production of free
radicals, lipid peroxidation, inflammation, and altered anti-
oxidant defense systems.3

Resveratrol (3,5,40-trihydroxystilbene) is a polyphenol
commonly found in grapes, wine, peanuts, and soy.5 It is
known to possess antioxidative, anticarcinogenic, and anti-
inflammatory properties.6,7 In a previous study, we
reported that resveratrol extended the lifespan of flies by
up to 41.9%.8 Other investigators have also shown that this
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phytochemical increased the longevity of yeast9 and obese
male mice by 70 and 26%, respectively, and thus it was
regarded as an antiaging agent.10

Drosophila melanogaster is the most significant inverte-
brate model organism to human considering the gene
sequence similarity.11 D. melanogaster is used as bio-
indicator for detection of contaminants as well as evalua-
tion of biological activity of pharmacological agents.12

Moreover, it is recommended by the European Centre for
the Validation of Alternative Methods (ECVAM) for pro-
moting the 3Rs (reduction, refinement and replacement)
of laboratory animal usage in toxicity studies, and testing.13

Earlier studies demonstrated that resveratrol protected
against fluoride-induced hepatotoxicity and neurotoxicity
in mice and rats.14–16 Hitherto, there is no study in the lit-
erature on the rescue role of resveratrol on fluoride toxicity
with respect to longevity and emergence rate in rodents.
Also, studies on the use of D. melanogaster on
NaF-induced oxidative stress and the preventive effects of
resveratrol are scarce in the literature. Therefore, as an alter-
native to conventional rodent models, the present study
investigated the biochemical relevance of resveratrol pro-
tective role against fluoride toxicity in D. melanogaster.

Materials and methods

Chemicals

Resveratrol was procured from AK Scientific, 30023 Ahern
Ave, Union City, CA 94587, U.S.A.). Sodium fluoride,
reduced glutathione (GSH), 1-chloro- 2,4-dinitrobenzene
(CDNB), 50,50-dithiobis(2-nitrobenzoic acid), and acetylth-
iocholine iodide were purchased from Sigma Aldrich
(St. Louis, MO, USA). All chemicals procured were of ana-
lytical grade.

D. melanogaster culture

D. melanogaster (wild-type, Harwich strain) were main-
tained on diet consisting of cornmeal, agar-agar
(1% w/v), brewer’s yeast (1% w/v), and nipagin (preser-
vative, 0.08% v/w). Flies were maintained at temperature
(23� 2�C) under 12-h dark/light cycle in the Drosophila
Laboratory, Department of Biochemistry, University of
Ibadan, Nigeria.

Treatment of flies and preparation of samples

To select appropriate NaF doses, longevity and survival
assays were carried out in one to three days old flies of
both genders. The flies were divided into six groups each
containing five replicates/group with 50 flies/vial and
treated with NaF (0, 10, 30, 50, 70, and 90mg/kg diet).
Resveratrol dose of 60mg/kg diets was selected based on
our previous study.8 Then, seven days duration was chosen
to investigate the toxic effects of NaF (0, 10, 30, 50, 70 and
90mg/kg diets) in D. melanogaster. Thereafter, flies were
anesthetized in ice, weighed, and homogenized in 0.1M
phosphate buffer (pH 7.4, ratio of 1mg:10 mL). Following
centrifugation at 4000 g for 10min at 4 �C, the supernatants
obtained were used for the determination of total protein,

hydrogen peroxide (H2O2), total thiol (T-SH), nitric oxide
(NO, nitrate and nitrate) levels as well as catalase,
glutathione-S-transferase (GST), and acetylcholinesterase
(AChE) activities. The data obtained were used to select
NaF (70mg/kg) in another experiment to evaluate the
rescue role of resveratrol (60mg/kg resveratrol) on NaF-
induced toxicity.

Determination of negative geotaxis and emergence
rate of flies

We evaluated locomotor performance (negative geotaxis) of
flies by using the method of Feany.17

The emergence rate of D. melanogaster offspring after
exposure to NaF was carried out as previously
described.8,18

Determination of oxidative stress and antioxidant
parameters, nitrite level, and acetylcholinesterase
activity

Protein determination was carried out as described by
Lowry et al.19 Total thiol content was estimated by the
method of Ellman.20 Glutathione S-transferase activity
was evaluated according to the procedure of Habig and
Jakoby.21 Catalase activity was determined by the method
of Aebi.22 Acetylcholinesterase activity was evaluated with
the method of Ellman et al.23 Hydrogen peroxide level was
determined according to the method of Wolff.24 The
amount of nitric oxide (nitrate and nitrite) in supernatants
was measured following Griess reaction method.25

Statistical analysis

The data are presented as the Mean� SEM. One-way anal-
ysis of variance (ANOVA)was used to assess the significant
differences among multiple groups under various treat-
ments, followed by Dunett’s post hoc test. In all the
groups, differences were considered statistically significant
among groups when P< 0.05, using the GraphPad Prism5.0
software.

Results

Longevity, survival rate, emergence of offspring, and
acetylcholinesterase activity in D. melanogaster
exposed to graded concentrations of NaF

The influence of different concentrations of NaF on the life-
span, emergence of offspring, and neurobehavioral param-
eters of D. melanogaster are presented in Figure 1. Exposure
of D. melanogaster to NaF at 10, 30, 70, and 90mg/kg diet
resulted in a dose-dependent decrease in the lifespan by
12.5, 12.5, 67.5, and 70% respectively, in comparison with
the control (Figure 1(a)). Further, treatment of flies with
NaF for seven consecutive days resulted in a significant
(P< 0.05) decreases in the survival and emergence rates
of flies at 70 and 90mg/kg diet (Figure 1(b)). In addition,
NaF inhibited AChE activity at doses of 30, 50, 70, and
90mg/kg diet in comparison with the control (P< 0.05;
Figure 1(d)).
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Antioxidant status in D. melanogaster exposed to
graded concentrations of NaF

The influence of NaF on antioxidant status in D. mela-
nogaster exposed to NaF for seven consecutive days is pre-
sented in Figure 2. Exposure to NaF significantly (P< 0.05)
increased H2O2 level (Figure 2(a)) at 30 and 50mg/kg diets

as well as NO level (Figure 2(b)) at 30, 70, and 90mg/kg
diets. Marked decrease in total thiol level (Figure 2(c)) was
noted at NaF doses of 30, 70, and 90mg/kg diet. Further,
NaF (10 and 30mg/kg diet) significantly decreased catalase
activity (Figure 2(d)) but increased GST activity (Figure 2
(e)) after seven days of treatment. In contrast, exposure to

Figure 1. Effects of NaF on the survival, emergence and AChE activity of D. melanogaster. Effects of NaF (10, 30, 50, 70, and 90mg/kg diet) on the longevity curve (a)

of and sevendays survival curve (b); offspring emergence (c) and AChE activity (d) of D. melanogaster. Data in (c) and (d) are presented as Mean�SEM of 50 flies per

vial (five replicates per group). *Significant difference compared with control group (P< 0.05). NaF: sodium fluoride; AChE: acetylcholinesterase. (A color version of this

figure is available in the online journal.)

Figure 2. Antioxidant status in D. melanogaster exposed to graded concentrations of NaF. Levels of hydrogen peroxide (a), nitrites/nitrate (b) and total thiol (c) and

activities of catalase (d) and GST (e) in D. melanogaster after sevendays of treatment with NaF (10, 30, 50, 70, and 90mg/kg diet). Data are presented as Mean�SEM

of 50 flies per vial (5 replicates per group). *Significant difference compared with control group (P< 0.05). NaF: sodium fluoride; GST: glutathione-S- transferase.

(A color version of this figure is available in the online journal.)
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NaF (90mg/kg diet) increased catalase activity but
decreased GST activity diet when compared with control
(P< 0.05; Figure 2(d) and (e)).

Resveratrol blunts NaF-induced elevations of hydrogen

peroxide, nitric oxide levels, and total thiol depletion in

D. melanogaster after sevendays of treatment

Figure 3 shows the effects of resveratrol supplementation
on the levels of H2O2, NO, and T-SH in flies co-exposed to
NaF for seven consecutive days. Resveratrol blunted NaF-
induced elevations of H2O2 (Figure 3(a)) and NO (nitrites
and nitrates) levels (Figure 3(b)), as well as depletion in
T-SH content (Figure 3(c)) in the treated flies when com-
pared with the control group (P< 0.05).

Resveratrol blunts NaF-induced disruption of

antioxidant enzymes and acetylcholinesterase

activities in D. melanogaster after treatment for
sevendays

Figure 4 shows the ameliorative role of resveratrol supple-
mentation on the antioxidant status and AChE activity in
flies co-exposed to NaF for seven consecutive days. The
treatment-related effects of resveratrol alone on the antiox-
idant status and AChE activity in the flies were not statis-
tically significant when comparedwith the control (Figure 4
(c)). Although, NaF exposure increased catalase activity
(Figure 4(a)) and inhibited GST (Figure 4(b)) and AChE
activities (Figure 4(c)) in the treated flies when compared
with the control group, the dietary supplementation with
resveratrol markedly abrogated NaF-mediated toxicity as

evidenced by the restoration of the antioxidant status and
AChE activity in D. melanogaster (P< 0.05).

Discussion

Fluorosis is a progressive degenerative disorder induced by
extreme intake of fluoride either by environmental pollu-
tion or natural sources via drinking water.26 Excessive
intake of fluorides has been linked with changes in the
steady-state of free radicals and altered antioxidant defense
systems.27 Here, we evaluated the toxicity of NaF and the
rescue role of resveratrol using D. melanogaster as an alter-
native to mammalian model. We found that NaF (10, 30, 70,
and 90mg/Kg diet) reduced the lifespan of D. melanogaster
by 12.5, 12.5, 67.5, and 70% respectively. In addition, NaF
induced accumulation of hydrogen peroxide and total
nitrate/nitrate levels, reduced emergence rate of flies,
inhibited acetylcholinesterase activity, and disrupted anti-
oxidant homeostasis in flies. Interestingly, these effects of
NaF were substantially ameliorated in flies co-treated with
resveratrol (60mg/kg).

The observation that NaF (10, 30, 70, and 90mg/kg diet)
reduced the lifespan of D. melanogaster by 12.5, 12.5, 67.5,
and 70% respectively implied that these doses heightened
aging in the flies as the treatment was throughout the life-
span of the flies. Previous studies by Hamza et al.28 and
Miranda et al.29 demonstrated chronic toxic effects of NaF
in mice and rats for 30 and 60days. In this study, using
Drosophila, we reported the toxic effects of lifetime exposure
to NaF which may suggest inherent toxicity arising from
lifetime human exposure to NaF. Consequently, we chose
seven days treatment regimen and duration since, beyond

Figure 3. Effects of resveratrol and NaF on hydrogen peroxide, nitrites/nitrates, and total thiol levels in D. melanogaster). Resveratrol blunts NaF-induced increase in

levels of hydrogen peroxide (a) and nitrites/nitrates (b) and depletion of total thiol content (c) in D. melanogaster after seven days of treatment with NaF (10, 30, 50, 70,

and 90mg/kg diet). Data are presented as Mean�SEM of 50 flies per vial (five replicates per group). a: Significant difference compared with control group; b:

Significant difference compared with NaF group (P< 0.05). NaF: sodium fluoride. (A color version of this figure is available in the online journal.)
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this day, significant mortalities were recorded in flies
exposed to 70 and 90mg/kg doses of NaF. The seven-day
survival assay carried out showed that NaF (70 and
90mg/kg diet) significantly reduced the survival of flies
compared with the control. This therefore implies that
chronic, acute, and lifetime exposures to overwhelmingly
high doses of NaF are potentially deleterious.

Further, the emergence of offspring of flies significantly
reduced only in the flies treated with 70 and 90mg/kg diet
of NaF. This informed the choice of 70mg/kg diet of NaF to
investigate the ameliorative role of resveratrol (60mg/kg
diet) in flies after seven days of treatment. This finding is
significant in Drosophila as NaF impacts the fecundity and
slows down the rate of metamorphosis in the flies.
Although, findings by Zhou et al.30 and Chioka et al.31 dem-
onstrated the impact of NaF on the male and female repro-
ductive system, focus was on the sperm production and
hormones respectively.

In the nervous system of insects, acetylcholinesterase is
involved in the modulation of cholinergic transmission. It
terminates nerve impulses by catalyzing the hydrolysis of
acetylcholine, which is an excitatory neurotransmitter at
synapses.32 We observed that NaF (30, 50, 70 and
90mg/kg) inhibited acetylcholinesterase activity in flies
after treatment for seven days. Our data agree with the
report of Dutta et al.33 in which AChE activity was inhibited
in the larva of flies exposed to NaF. This effect would have
caused accumulation of acetylcholine which may lead to
overstimulation of the acetylcholine receptors. Indeed, a
correlation between nervous activity and acetylcholine
has been reported when acetylcholinesterase activity is
inhibited.34 However, in D. melanogaster co-treated with

NaF (70mg/kg diet) and resveratrol (60mg/kg diet), the
activity of acetylcholinesterase was restored.

Moreover, NaF increased H2O2 level and disrupt cata-
lase activity in D. melanogaster. Under an increased condi-
tion of hydrogen peroxide, it can react with Fe2þ via Fenton
reaction to generate hydroxyl radical (HO), which is a
strong reactive oxidant.35Catalase, a heme-containing
enzyme,36 functions to degrade H2O2 to water and molec-
ular oxygen, thus protecting the cell from the harmful
effects of hydroxyl radical.37The NaF-induced disruption
of catalase activity can be described as a biphasic effect in
which doses of 10 and 30mg/kg diets inhibited catalase
activity, while higher doses increased its activity.
However, the fact that resveratrol restored NaF-induced
elevation of hydrogen peroxide level and disruption of cat-
alase activity are further indications that it possesses both
antioxidative and free radical scavenging properties as pre-
viously reported.8

Glutathione-S-transferases (GSTs) are phase II family of
antioxidant enzymes that catalyze the conjugation of
reduced glutathione with electrophiles. Apart from this,
they play a vital role in the survival of organisms during
a condition of oxidative damage.38Thus, the observed NaF-
induced disruption of total GST activity might imply
impaired detoxification capacity of the flies. This might
be the reason for the increased mortality recorded in the
sevendays of the survival study. Interestingly, resveratrol
(60mg/kg diet) restored NaF-induced disruption of GST
activity in D. melanogaster, thus further confirming its anti-
oxidative property.

Total thiols are a group of organic compounds contain-
ing sulfhydryl group.39Thiols are good reductants and they

Figure 4. Effects of resveratrol and NaF on antioxidant enzymes and acetylcholinesterase activities in D. melanogaster. Resveratrol blunts NaF-induced increase in

catalase activity (a) and inhibition of GST (b) and AChE activities in D. melanogaster after sevendays of treatment with NaF (10, 30, 50, 70, and 90mg/kg diet). Data are

presented as Mean�SEM of 50 flies per vial (five replicates per group). a: Significant difference compared with control group; b: Significant difference compared with

NaF group (P< 0.05). NaF: sodium fluoride; GST: glutathione-S-transferase; AChE: acetylcholinesterase. (A color version of this figure is available in the online journal.)
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are found in albumin as well as cysteine-derived molecules
such as homocysteine, glutathione, and c-glutamylcysteine.
During conditions of oxidative stress, thiols are oxidized to
form disulfides between protein thiol groups as well as
thiols with low molecular weight. Thus, the thiol/disul-
phide homeostasis is vital in order to maintain antioxidant
protection, oxidative balance, and regulation of the activity
of antioxidant enzymes.40,41 The observation that NaF
depleted total thiol level further implies oxidative stress
and impairment of the normal physiology of the flies
since a decrease in the level of thiols has been noted in
various medical disorders.42 In the co-exposure paradigm,
resveratrol caused a complete restoration of total thiol level
depicting its antioxidative property. This is in accordance
with Abolaji et al.8

Lastly, resveratrol preventedNaF-induced accumulation
of nitrite/nitrate level inD. melanogaster.NO synthases pro-
duce nitric oxide via the conversion of L-arginine to NO
and citrulline. Although, NO plays essential role in several
physiological processes, nonetheless, if it accumulates, it
can react with superoxide anion to produce toxic nitrite
anion, thereby causing tissue damage.43Thus, the apparent
suppression of NaF-mediated increase in NO concentration
by resveratrol further suggests its anti-inflammatory
property.

In conclusion, the oxidative stress induced by NaF was
due to the alteration in the free radicals-antioxidant balance
in the flies. However, the co-administration of NaF with
resveratrol suggests that resveratrol offers ameliorative
role by reducing mortality, restoring AChE activity, and
alteration of antioxidant status in D. melanogaster, a non-
target organism. These beneficial effects are partly associ-
ated with its free radical scavenging and antioxidant prop-
erties. This study therefore further reflected the suitability
of D. melanogaster as a model to study fluoride-induced
toxicity and the ameliorative role of phytochemicals such
as resveratrol.
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