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Abstract
The epithelial-to-mesenchymal transition (EMT) is a complex cellular process in which

epithelial cells acquire mesenchymal properties. EMT occurs in three biological settings:

development, wound healing and fibrosis, and tumor progression. Despite occurring in

three independent biological settings, EMT signaling shares some molecular mechanisms

that allow epithelial cells to de-differentiate and acquire mesenchymal characteristics that

confer cells invasive and migratory capacity to distant sites. Here we summarize the molec-

ular mechanism that delineates EMT and we will focus on the role of E2 promoter binding

factors (E2Fs) in EMT during tumor progression. Since the E2Fs are presently undruggable

due to their control in numerous pivotal cellular functions and due to the lack of selectivity

against individual E2Fs, we will also discuss the role of three mitotic regulators and/or

mitotic kinases controlled by the E2Fs (NEK2, Mps1/TTK, and SGO1) in EMT that can be

useful as drug targets.
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Introduction

The concept of epithelial to mesenchymal transformation,
now referred to as the epithelial-to-mesenchymal transition
(EMT), was first coined by Elizabeth Hay1 when she
observed that epithelial cells undergo complex cellular
processes to acquire mesenchymal characteristics in order
to invade and migrate during primitive streak develop-
ment in chick embryos. EMT initiates by the loss of
epithelial junctions and apical-basal polarity.2–4 Loss of
epithelial junctions and cell polarity results in cytoskeleton
reorganization and morphological changes.

These molecular changes are accompanied by changes in
protein expression, such as the downregulation of proteins
that compose the junction complexes and epithelial

markers, as well as the upregulation of mesenchymal
markers.5,6 The loss of E-cadherin is considered a hallmark
of EMT.7 Typically, the loss of E-cadherin results in expres-
sion shift with another cadherin isoform, a process known
as “cadherin switching.” As discussed in Wheelock et al.,7

this cadherin switch is not restricted to E-cadherin to
N-cadherin and is context-dependent. Other molecular
changes include changes in integrin expression, which cor-
relates with increased expression of matrix metalloprotei-
nases (MMPs) that contribute to the loss of epithelial
junctions, enhance ECM degradation, and enable cell inva-
sion.8,9 EMT can also be regulated at the RNA level either
by alternative splicing that generates alternative isoforms
of pivotal EMT-related proteins or non-coding miRNA that
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bind to mRNAs coding for epithelial markers and inhibit
their translation or promote their degradation. Most molec-
ular changes are mainly orchestrated by EMT transcription
factor families such as SNAIL,10 bHLH (which includes
TWIST1),6,11 ZEB,6,12 and many others. Several signaling
pathways are involved in EMT regulation and can be
further reviewed in Lamouille et al.4 Ultimately, all the
processes described above result in the acquisition of
mesenchymal features that allow the cells to invade and
migrate through the extracellular matrix (ECM).

EMT can occur in three distinct biological settings
with clearly delineated functional consequences: Type 1
(associated with embryogenesis and development),
Type 2 (associated with wound healing and fibrosis), and
Type 3 (associated with cancer progression).13 The latter is
our main interest since EMT is a precursor of cancer metas-
tasis, in which prevention and treatment remain a key
clinical challenge. However, EMT does not only promote
metastasis, but also promote tumor initiation, tumor stem-
ness, and resistance to therapy.11,14,15

EMT has been described as a binary process with two
distinct populations: epithelial and mesenchymal.
However, recent studies have demonstrated the presence
of intermediate states referred to as partial, incomplete, or
hybrid EMT states. Pastushenko and Blanpain16 classified
the states as epithelial, early hybrid EMT, late hybrid EMT,
and full EMT or mesenchymal. Each transition state is
grouped according to their distinct characteristics includ-
ing cell shape, cell adhesion, expression of surface markers,
transcription factors, and EMT-associated genes. They also
classified these transition states accordingly to prolifera-
tive, invasiveness, plasticity, stemness, and metastat-
ic properties.

Since EMT is a key precursor of cancer metastasis, we
will describe the role of E2 promoter binding factors (E2Fs)
and a subset of mitotic kinases controlled by E2Fs in EMT
and cancer.

E2Fs in cancer, EMT, and metastasis

The E2F family of transcription factors is divided into three
major groups: activators (E2F1, E2F2, and E2F3a), canonical
repressors (E2f3b-E2F6), and atypical repressors (E2F7 and
E2F8) of gene transcription.17 The E2F activators are
silenced throughout G1 phase by physical association
with the Rb tumor suppressor and are activated by the
sequential phosphorylation of Rb first by the G1/S phase
CDKs (initially by cyclin D/Cdk4/Cdk6 and then by cyclin
E/A/Cdk2); this hyper-phosphorylation results in the
occupancy of a plethora of promoters by the E2F activa-
tors.18–24 The E2Fs have many functions such as the
regulation of the cell cycle, centriole duplication, cell dif-
ferentiation, tissue development, DNA repair, genomic
integrity, apoptosis, metabolism, and angiogenesis.17,25–27

Early reports focused on the ability of unregulated E2F
activators to trigger hyper-proliferation and apoptosis.28–33

Different subsets of E2Fs influence the survival outcomes
of several cancers; for example, Huang et al.34 showed that
all eight E2Fs are significantly upregulated in hepatocellular
carcinoma patients and that overexpression of E2F3, E2F5,

and E2F6 correlated with worse overall- and disease-free
survival. Studies from our laboratory showed that overex-
pression of E2F1 and E2F3 strongly correlate with poor over-
all- and relapse-free overall survival of breast cancer
patients, while E2F2 did not.35 Similarly, Liu et al.36

showed that all E2Fs are overexpressed in breast cancer
with the exception of E2F4 and that E2F1, E2F3, E2F7, and
E2F8 associated with poor relapse-free survival in breast
cancer patients, and similar results were obtained by
Li et al.37

The E2Fs can act as tumor suppressors or oncogenes
depending on the tissue context. For example, loss of
E2F3 in Rbþ/� mice suppressed pituitary tumors but
accelerated tumor formation and metastasis of thyroid
tumors38; in contrast, the ablation of E2F1 in Rbþ/� mice
suppresses both of these tumor types.39 Likewise, increased
expression of E2F1 driven by the K5 promoter in older
transgenic mice resulted in a variety of spontaneous
tumors including the skin, but E2F1 expression in the
same mouse model blocked skin tumor development in
the two-stage induction model.40 Also, the ablation of
E2F1 and E2F3 in an MMTV-neu-driven mouse model
of mammary cancer could severely restrict tumor
growth.41 A similar MMTV-neu model showed loss of
E2F1 accelerated tumorigenesis and E2F2 could suppress
it, but that ablation of E2F1 or E2F2 suppressed metasta-
sis.42 Also, E2F2 behaves differently than E2F1 or E2F3 in
tumors initiated by MMTV-c-Myc, since genetic ablation of
E2F2 accelerated metastasis to the lungs of mice, and
increased migration and lung-colonization ability when
knocked down in triple-negative MDA-MB-231 cells.43

While mechanistically the E2Fs could act as tumor sup-
pressors or oncogenes due to their ability to suppress or
induce proliferation and apoptosis in different tissue con-
texts, Saavedra et al.44 demonstrated that genetic ablation of
E2F3a and E2F3b in primary mouse fibroblasts resulted in
centrosome amplification—defined as the acquisition of
three or more centrosomes that result in pseudo bipolar
and multipolar mitotic spindles and aneuploidy; neither
ablation of E2F1, E2F2, E2F4 or E2F5 could cause these
phenotypes. These experiments suggested that loss of
repression likely due to the loss of E2F3b was central in
suppressing centrosome amplification and chromosome
instability. Our group first demonstrated that the overex-
pression of E2F activators (E2F1, E2F2, and E2F3a) in
MCF10A mammary epithelial cells increases centrosome
amplification, chromosome instability, and deregulate
timing of mitosis/cytokinesis.45 Moreover, depletion of
E2F3a and E2F3b in Her2þ breast cancer cells reduced
tumor growth and burden by suppressing centrosome
amplification and unregulated mitosis.46 This is an
important finding since centrosome amplification and
chromosome instability can lead to tumor initiation,47,48

maintenance,49–53 and progression46,54–56. Centrosome
amplification correlates with poor prognostic factors,56

causes chromosomal instability49 tumor heterogeneity,57

and promotes invasion45 through changes in cell polari-
ty.58,59 These results suggest that activation or repression
by E2Fs plays a major role in maintaining centrosome
homeostasis and genomic integrity and may signal
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invasion and EMT through centrosome amplification and
loss of cell polarity.

It is widely recognized that the E2Fs signal EMT, inva-
sion, and metastasis.28,60 For example, overexpression of
E2F1 in squamous carcinoma cells enhances their ability
to invade.61 Elegant studies from the Chellappan laborato-
ry showed that several MMPs genes are regulated by the
E2Fs through an Rb-Raf-1 interaction.62 They predicted E2F
binding sites on all 23 human MMPs gene promoters
and showed that MMP9, MMP14, and MMP15 were
E2F1-responsive. Furthermore, they demonstrated that
the depletion of E2Fs reduced invasion and migration in
vitro, and reduced metastasis in tail vein lung metastatic
models in mice. Further, several receptor proteins have
been identified and associated with E2F1 expression and
EMT in breast, bladder, and lung cancers.65,66 Wang
et al.67 showed that E2F1 promotes EMT by the direct reg-
ulation of ZEB2 in small cell lung carcinoma. Previous stud-
ies from these authors also showed that E2F1 regulates
MMP-9 and MMP-16.68 The E2F1/SP3/STAT6 axis has
been shown to increase the expression of ZEB1 and ZEB2,
and signal IL-4 induced EMT in colorectal cancer.69 Also,
depletion of E2F1 resulted in decreased expression of
DDR1, which in turn decreased migration and invasion of
osteosarcoma cells.70 Further analysis demonstrated that
STAT3 signaling was impaired upon E2F1 depletion, result-
ing in decreased vimentin, MMP2, and MMP9, and
increased E-cadherin. Liang et al.71 demonstrated that
E2F1 depletion inhibited proliferation, invasion, and
migration in prostate cancer cells. Meanwhile, E2F1 deple-
tion in tumor xenograft suppressed tumor growth, inva-
sion, and EMT by increasing E-cadherin and decreasing
the expression of vimentin; in this study, CD147 was iden-
tified as an interaction partner for E2F1. Further, Knoll
et al.72 showed that the E2F1-miR-224/452-TXNIP axis pro-
motes EMT, migration, and invasion in melanoma, and can
serve as a predictor of patient survival.

Fewer studies have been devoted to study the role of
E2F2 and E2F3 in EMT. One of the few studies done with
E2F2 shows that it correlates with elevated levels of vimen-
tin and inversely correlates with miR-99 in lung cancer, that
E2F2 inhibition allows miR-99 to repress stemness in lung
cancer and that overexpression of E2F2 rescues back the
migratory potential of cells overexpressing miR-99.73

Studies focused on E2F3 also center in non-coding micro
RNAs. Studies from Ye et al.74 showed that forced overex-
pression of miR-363 decreased proliferation, migration,
invasion of hepatocellular carcinoma cells, and reversed
EMT in vitro and in vivo. Further analysis revealed that
miR-363 targets the 30 untranslated region of E2F3 and
that they are inversely correlated, and that overexpression
of E2F3 in cells expressing miR-363 restored colony forma-
tion, migration, and invasion capacity. The control of E2F3
by miR-363 has implications for several cancers since the
aberrant expression of miR-363 and its role in tumor path-
ogenesis and progression have already been reported in
gallbladder, colorectal, gastric, head and neck, and breast
cancers. This is not exclusive to miR-363 since E2F3 has
been reported to be regulated in HCC cells by several
miRNAs, such as miR-141, miR-144, miR-503, miR-214

miR-424, and miR-217. In another study, it was shown
that miR-200c, which is down-regulated in bladder
cancer, regulates BMI-1 and E2F3.75 Mutations in two
putative miR-200c-binding sites resulted in reduced cell
invasion, migration, proliferation, and increased E-cad-
herin levels. Other studies show that the E2F activators
can contribute to metastasis by influencing the tumor
microenvironment. For example, a study from the Leone
laboratory evidenced the role of E2F3 in metastasis,
although not by inducing EMT. In their study, it was
shown that the ablation of E2F3 in tumor-associated macro-
phages led to decreased expression of extracellular matrix
modifiers that resulted in decreased pulmonary metastasis
of breast cancer cells.76 Another study showed in an
MMTV-polyomavirus-induced model of mammary tumor
metastasis that the ablation of E2F1 and E2F2 reduced met-
astatic capacity by reducing the expression of several genes
involved in angiogenesis, remodeling of the extracellular
matrix, tumor cell survival, and tumor-cell interactions
with vascular endothelial cells that promote lung
metastases.77

Some studies have been devoted to study the role of the
remaining E2Fs (E2F4-E2F8). To our best knowledge, the
only two studies that show any effect of E2F4 in EMT
were done by the Chellappan laboratory (briefly discussed
above)62 and one by Baiz et al.78 In this last study bortezo-
mib, an anti-proliferative drug that inhibits the 26S protea-
some subunit promotes cell cycle arrest and apoptosis was
tested in hepatocellular carcinoma cells and it promoted
downregulation of E2F2 and upregulation of E2F4, E2F6,
and E2F8. These changes correlated with the expression of
some EMT-related genes in a microarray; however, no func-
tional nor other expression analysis was conducted to eval-
uate how these changes modulate EMT. Another study
showed that the treatment of NMuMG cells (mouse mam-
mary cells) with TGFb1 (a known inducer of EMT) resulted
in E2F5 downregulation.79 Further, a gene expression anal-
ysis identified E2F5 as a possible target of LOXL2 (lysyl
oxidase-like 2), which stabilizes SNAIL1 and is upregulated
in pancreatic cancer.76 In addition to the study of Baiz et al.,
a study done in endometrial carcinoma cells showed that
miR-424 (which associates with poor predictor factors, cell
invasion, and migration) negatively regulates E2F663; this
was evidenced by dual-luciferase reporter system and
expression assays. Inhibition of miR-424 with an antisense
oligonucleotide sequence increased the expression levels of
E2F6. Lastly, it was shown that miR-30a-5p decreased EMT
and metastasis in gallbladder carcinoma cells by targeting
E2F7.64 Inhibition of miR-30a-5p resulted in increased cell
proliferation, migration, invasion, and nuclear transloca-
tion of b-catenin. Meanwhile, NOZ (a gallbladder carcino-
ma cell line) transfected with miR-30a-5p and transplanted
in nude mice resulted in slower tumor growth and reduced
hepatic metastasis. E2F7 and E2F8 have been shown to also
induce angiogenesis, which facilitates metastasis, by inter-
acting with HIF1and regulating VEGFA.80

In summary, these studies together with the scarce
research focus on E2F2-8 and EMT accentuate the need to
redirect our attention to the study of E2F2-E2F8 because
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even though they have redundant functions, they have
unique functions, expression, and prognostic values.

Current therapies against E2Fs, mitotic
regulators, and EMT

Despite their significant contribution to tumorigenesis
through cell-cycle deregulation, centrosome amplification,
and chromosome instability, and their apparent role in
EMT, invasion, and metastasis, E2F activators are virtually
undruggable.81,82 Current therapies directed against E2Fs
in cancer include inhibition of upstream regulators using
CDK4/6 inhibitors (which prevent the initial phosphoryla-
tion of Rb and keep E2Fs in a repressed state), use of trun-
cated E2F1 protein, use of small molecules or peptides to
inhibit E2F activity, and the use of E2F-driven oncolytic
viruses. The Leone83 and Knudsen84 groups reviewed in
detail these therapies and their advantages and disadvan-
tages. Out of these four possible therapies directed to E2Fs,
CDK4/6 inhibitors and E2F-driven oncolytic viruses are in
clinical trials.85,86 The major disadvantages of the CDK4/6
inhibitors are that they do not work if RB is not intact or if
there is E2F amplification.84,87 On the other hand, E2F-
driven oncolytic virus treatment has shown promising
results. One example is ICOVIR-7, which features an
RGD-4C modification of the fiber HI-loop of serotype 5
adenoviruses for enhanced entry into tumor cells and has
been tested clinically.86 Treatment with ICOVIR-7 showed
anti-tumoral efficiency in 9 out of 17 patients, while 5 out
of 12 exhibited stabilization or reduced tumor size.
The remaining two target therapies mentioned above are
not yet in clinical trials and major complications include the
delivery method, specificity against individual E2Fs, and
potential side effects such as mounting a general autoim-
mune response against viruses.

Despite E2Fs not currently being ideal targets for cancer
therapy because they are transcription factors that regulate
numerous essential normal cell processes, and due to the
lack of selectivity against specific E2Fs, E2F-regulated
mitotic kinases and regulators, including NEK2, Mps1/
TTK, BUB1, BUBR1, and SGO1 can serve as potential
drug targets. We recently demonstrated that individual
expression of E2F1 or E2F3 in mammary epithelial cells
elevates the levels of multiple regulators of mitosis and/
or the centrosome, including NEK2, Mps1/TTK, SGO1,
HEC1, BUBR1, and PP2AC.35 Some of these centrosome/
mitotic regulators have effects on EMT and this notion was
first explored by investigating the effect of another gene,
Aurora-A. Early studies from Wan et al.88 showed that
Aurora-A, a mitotic kinase involved in centrosome segre-
gation and spindle assembly, mediates cell invasion and
EMT (denoted by changes in E-cadherin and b-catenin) in
nasopharyngeal carcinoma through the MAPK pathway.
This was the first report that linked a mitotic regulator
with EMT induction. Here, we will discuss briefly the role
of these E2F targets in EMT. However, bear in mind that
E2F regulates many targets that can promote EMT through
pathways not yet consider here—many of which have been
discussed in the previous section.

NEK2

NEK2 (never-in-mitosis-a-related kinase 2) is a serine/thre-
onine that localizes in the centrosome and has multiple
roles in the cell cycle. NEK2 belongs to the NEK family
(which has 11 other members). However, NEK2 has
received special attention in cancer due to its numerous
functions in normal and oncogenic states. The NEK2 gene
has three splice variants (NEK2A, NEK2B, NEK2C), being
NEK2A the full-length protein.89–91 The N-terminal of
NEK2 is the catalytic kinase domain, while the C-terminal
is the regulatory domain. NEK2 expression peaks in S and
G2 phase.90 It has been shown that E2F4 binds to the NEK2
promoter during the G1 phase serving as a transcriptional
repressor.92 Our lab also showed that NEK2 is under the
control of the Cdk4 pathway and the E2Fs and that NEK2
can rescue back centrosome amplification in Her2þ breast
cancer cells silenced for Cdk4 or E2F3.35,93–95 NEK2 is also
repressed by p53 and miRNA-128.96,97 On the other hand,
NEK2 is positively regulated by FoxM1.98,99 NEK2 is
degraded by the ubiquitin-proteosome complex and
activated by auto-phosphorylation at several residues—
reviewed in Fang and Zhang.100 NEK2 participates in
centrosome duplication and centrosome separation by
phosphorylating c-Nap1, Rootletin, and Cep68.101–103

Moreover, NEK2 stabilizes microtubules through phos-
phorylation of Nlp and centrobin during interphase.104

Also, NEK2 phosphorylates Hec1 to control kinetochore
attachment and spindle assembly, specifically chromosome
alignment by direct interaction with MAD1 or phosphory-
lation of Hec1 and SGO1.105–107 NEK2 also mediates
chromosome separation.100,108 Apart from these roles in
the cell cycle, NEK2 is a novel regulator of B cell develop-
ment and immune response.109

NEK2 is clinically relevant for cancer treatment since it
has been shown to be upregulated in diverse cancer cells
and cancer types.100,110 We demonstrated that Nek2 may
represent an important target against mammary cancers
since it can significantly suppress centrosome amplification
and chromosome instability triggered by Her2, H-RasG12V,
or H-RasG12V and c-Myc.35,93–95 Xenograft studies have
demonstrated that NEK2 depletion results in reduced
tumor growth.111 Furthermore, studies have shown that
uncontrolled NEK2 activity can lead to chromosomal insta-
bility,112 which can have an effect on tumorigenesis and
tumor progression.57 Our studies showed that NEK2 over-
expression in Her2þ breast cancer cells downregulated for
E2F3 generates pre-invasive protrusions in 3D cell culture
models (mammospheres).45 A recent study shows that
NEK2 correlates with migration, invasion, and EMT
in hepatocellular cells.113 Some of the genes that were
modulated by Nek2 were E-cadherin, N-cadherin, and
vimentin, both in cancer cell lines as well as in patient
tissues. Gene microarray identified other potential
EMT-related genes that might be modulated. Another
study correlated NEK2 expression with hepatoma metasta-
sis and showed that NEK2 modulates E-cadherin and
MMP9.114 Das et al.115 showed that NEK2 overexpression
leads to upregulation of the Wnt orthologue wingless and
alteration of E-cadherin, b-catenin, and activation of the
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Akt pathway; Nek2 cooperates mitogenic pathways (Src or
Ras) to cause distant metastasis in Drosophila melanogaster;
in contrast, such cooperation was abrogated by PI3K inhib-
itors. Studies from Mbom et al.116 further investigated how
NEK2 regulates b-catenin and found that NEK2 (under
the regulation of Plk1) binds and phosphorylates the
N-terminus of b-catenin (independently of GSK3b).
Phosphorylation of b-catenin prevents ubiquitination and
degradation; thus, b-catenin accumulates at centrosomes
during mitosis. Moreover, NEK2 has been shown to
contribute to drug resistance. One study showed that
NEK2 induces drug resistance through the activation of
efflux drug pumps in myeloma.117

Surprisingly, there is not any current inhibitor for NEK2
in clinical trials; however, some studies have tested the
effects of pharmacological inhibition of NEK2 or downre-
gulation of NEK2 by RNAi in cellular and animal models.
Other strategies include blocking of ATP-binding site and
interruption of protein interaction. Studies from Kaowinn
et al.118 tested the efficacy of CGK062, a small chemical mol-
ecule that inhibits CUG2, which is a gene that interacts
with NEK2. Findings from this study showed that
CGK062 promotes phosphorylation of b-catenin at Ser33/
Ser37 and induced its degradation; thus, posing a potential
therapeutic use in lung cancer. Another study showed that
the treatment of non-small cell lung cancer cells with
deguelin, a rotenoid extracted from Mundulea sericea
resulted in lower Nek2 levels, reduced migration, and
invasion.119 Ectopic expression of Nek2 negated deguelin
function by preventing elevation of mRNAs coding for
E-cadherin and the downregulation of vimentin mRNA.
Another approach currently tested is NEK2 siRNA therapy
using a portal venous port-catheter system for liver metas-
tasis in pancreatic cancer.120 In their study, NEK2 siRNA
inhibited tumor growth in a subcutaneous xenograft mouse
model, prolonged survival time, and prevented liver
metastasis. The main limitation of RNAi inhibition is the
delivery method. Regarding ATP-binding, site blocking is
the poor selectivity. The most promising approach is the
interruption of protein inhibition. Notably, INH1, which
inhibits the NEK2/Hec1 interaction121 has shown anti-
tumoral activity by reducing tumor growth in breast
cancer nude mice models. A series of analogs of INH1
have been synthesized to improve its efficacy.

Mps1/TTK

Monopolar spindle 1 kinase (Mps1) or TTK is a serine, thre-
onine, and tyrosine kinase that has multiple roles in mitosis
and meiosis.122 TTK is widely distributed in most eukar-
yotes and has alternative splice forms in humans and
mice.122 TTK is found in centrosomes and is required
for the assembly of the spindle pole body in yeast and
contributes to centrosome duplication in various eukar-
yotes—reviewed in Pike and Fisk123— albeit its role in cen-
triole duplication in human cells has been challenged.124

TTK localizes at kinetochores and ensures control of
proper biorientation of sister chromatids on the mitotic
spindle at kinetochores in collaboration with AURORA
kinase B and Hec1/NDC80 as its substrate.125,126 Besides

the regulation of TTK in the spindle assembly checkpoint,
TTK is involved in the exit of mitosis and cytokinesis127

through the interaction with Mob1 and MIP1.128,129 Apart
from its roles in mitosis, TTK is involved in the genotoxic
stress response (reviewed in Liu andWiney122) and meiosis
I and II.130 The C-terminal catalytic domain undergoes
auto-phosphorylation at serine, threonine, and tyrosine
sites (to a lesser extent) to activate itself.131 Auto-
phosphorylation also helps in subcellular localization.
Like NEK2, TTK is controlled at the transcriptional level
by the E2Fs, specifically, E2F4 and to a lesser degree E2F1
binds to TTK promoter and represses TTK transcription in
cells during interphase.92 TTK protein levels also rise upon
overexpression of E2F1 or E2F3 in human mammary epi-
thelial cells.35 Meanwhile, IL-2 appears to be an inductor
of TTK.132 The major route of TTK inactivation is through
degradation in anaphase by the ubiquitin E3 ligase
APC/Cdc20.133 Another proposed mechanism of degrada-
tion is de-phosphorylation, however; to this date, there has
not been any phosphatase identified yet.

TTK is deregulated in several human tumors. Elevated
levels of TTK have been reported in thyroid papillary car-
cinoma, breast cancer, gastric cancer, lung cancer, andmany
more and its elevation correlates with poor prognosis and
tumor aggressiveness—reviewed in Liu and Winey.122 TTK
is often overexpressed in hepatocellular carcinomas and
promotes proliferation, anchorage-independent growth,
and cell migration.134 Previously, we showed that TTK is
overexpressed in Her2þ cells that also display elevated
levels of centrosome amplification and that its silencing
reduces that process in Her2þ cells.135 Recently, we
showed the highly novel finding that mitotic kinases may
be involved in the early stages of metastasis by showing
that pharmacologic inhibition and silencing of TTK
reversed EMT, suppressed invasion, and increased the
expression of KLF5, an effector of TGF-b signaling; further,
TTK inhibition decreased miR-21 but increased miR-200
expression and suppressed TGF-b signaling.136 Thus, TTK
may be an excellent target to suppress cancer cell survival
and progression to metastasis. Currently, there is an Mps1/
TTK inhibitor in clinical trial Phase I (CFI-402257), in which
MPS1 inhibitor is administered along with paclitaxel in
patients with advanced/metastatic Her2—breast cancer
(NCT03568422) to induce tumor death by increasing chro-
mosome mis-segregation—reviewed in Jusino et al.57 Also,
this inhibitor (CFI-402257) is used alone to treat advanced
solid tumors from patients enrolled in another clinical trial
Phase I (NCT02792465).

SGO1

SGO1 (Shugoshin 1) plays a role in mediating the centro-
meric cohesion of sister chromatids, preventing their
premature dissociation during cell division.137 SGO1 is
also known as a guardian of the genome due to its role in
suppressing chromosomal instability during cell division.
SGO1 has several splicing variants and along with SGO2,
they conform to the Shugoshin family.138 Here we will
focus only on SGO1 due to its novel role in EMT. SGO1
N-terminal homo-dimerizes and interacts with other
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proteins, while the C-terminal contributes to chromosomal
localization.138,139 SGO1 is widely distributed in eukaryotes
such as yeast, invertebrates (i.e. Drosophila melanogaster),
plants, mice, etc., and induces similar functions to human
SGO1 when expressed in these species.139 SGO1 levels are
low during G1, gradually increases during S phase, accu-
mulates at G2, and peaks in mitosis (during prometaphase
and metaphase), and are followed by a rapid decline upon
exiting from mitosis due to proteolytic cleavage dependent
on the APC/C complex through removal of Ken box or D
box (destruction box) sequences.140–143 SGO1 has nuclear
localization sequences and phosphorylation sites for
CDKs,137 Plk1,144 AURORA B,137 BUB1,145,146 and
NEK2A.107 In early mitosis, SGO1 co-localizes at the inner
centromeres with Cohesin, and a small fraction localizes at
the kinetochores at metaphase.147 SGO1 forms a complex
with PP2Ato prevent premature dissociation of Cohesin
from sister chromatids preventing phosphorylation of
SCC3 by Plk1.148 BUB1 and AURORA B are important for
localization of SGO1 in centromeres.145,146 On the other
hand, phosphorylation by NEK2A is not required for
SGO1 assembly but for chromosome congression.107

Until recently, research on SGO1 was focused on cell
embryology; however, some studies have shown the role
of SGO1 on tumorigenesis of intestinal cancer,149 liver
cancer,150,151 neuroblastoma,152 lung cancer (through Wnt
activation),153 and colon cancer.154 An interesting study
from Mu et al.155 showed that SGO1 overexpression corre-
lates with poor prognostic factors in prostate cancer.
Furthermore, the SGO1 knockdown resulted in the
inhibition of prostate cancer cell proliferation, migration,
invasion, and changes in EMT (through the rescue of
E-cadherin protein levels and decrease in vimentin pro-
tein levels). Other studies and ours have shown the role of
SGO1 in the suppression of chromosome instabili-
ty.35,156–158

Particularly, our studies show that overexpression of
E2F1 and E2F3 leads to overexpression of SGO1 in mam-
mary epithelial cells and that SGO1 guard against centro-
some amplification and chromosome instability in these
cells35 and that silencing of SGO1 suppresses centrosome
amplification in Her2þ cells.135 Since SGO1 is essential for
proper spindle assembly checkpoint functioning and chro-
mosome cohesion,137,146,159 and our studies have shown its
role in centrosome amplification and chromosome instabil-
ity,35,135 SGO1 represents a novel drug target for cancer.
Furthermore, SGO1 localization to chromosome arms and
centromeres is controlled by phosphorylation by the
kinases Aurora B160 and BUB1.146 In turn, SGO1 brings
the kinase PLK1 to centromeres.161,162 Therefore, Sgo1 is
upstream and downstream of proteins currently in clinical
trials and its levels and function may affect outcomes of
these patients—currently in clinical trials. However, far
more research needs to be done to elucidate the mechanism
of SGO1 in EMT and how can be targeted, and should be
used as a cancer target with care, because it can suppress or
induce chromosome instability and centrosome amplifica-
tion, depending on cell context.

Conclusion

As discussed above, both E2Fs and E2F targets exert a role
in EMT. However, since E2Fs are presently undruggable,
due to their numerous important cellular functions and the
lack of selectivity against individual E2Fs, we propose that
E2F targets, such as NEK2, TTK, or SGO1 are further inves-
tigated in order to design clinical small molecules that
inhibit them and prevent EMT. There is a relatively new
classification of EMT. This sub-classification is relatively
new and there are no publications that correlate E2Fs
with any phase. The article published by Pastushenko
et al.16 makes a distinction based on EMT gene expression,
cell adhesion, invasiveness, plasticity, stemness, and metas-
tasis. Rather than focusing on pathways that mediate these
changes, the author focuses on what type of cancer exem-
plifies these phases. For example, breast cancer grouped
into the Hybrid EMT state category. Since we study E2Fs
in the context of breast cancer, our data are consistent with
this classification. We have observed that E2Fs associated
with the hybrid EMT state, characterized by the expression
of certain mesenchymal genes like vimentin and
N-cadherin and certain EMT transcription factors while
not influencing the expression of other genes such as
E-cadherin (Jusino and Saavedra, unpublished). The E2Fs
may also help in the late stages of metastasis, where cells
can undergo the mesenchymal to epithelial transition
(MET) to be able to grow in the metastatic site. However,
this is all speculation at this point.

We propose the model that that overexpression of E2F
activators (E2F1-3) or downregulation of E2Fs repressors

E2F Activators 
(E2F1-3a)

Mitotic Regulators (NEK2A, 

MPS1/TTK, SGO1)

EMT Transcriptional 

Factors 

EMT Markers

Pre-Invasion

Increase in MMP Expression/Activity 

Leading to Invasion

Metastasis

CIN/CA

miRNAs
E2Fs 

Repressors

Rb

miRNAs

Figure 1. Model depicting how the E2F transcriptional activators and mitotic

kinases under their control may control EMT in cancer. Overexpression of E2F

activators (E2F1-3) or downregulation of E2Fs repressors (E2F4-8) leads to

mitotic regulator deregulation (NEK2, MPS1/TTK, SGO1), which in turn lead to a

cascade of events that ultimately leads to metastasis. Alternative models sug-

gest miRNA may mediate these changes through controlling the E2Fs activators

or mitotic regulators, that the E2Fs may regulate EMT independently of these

mitotic regulators by regulating EMT transcription factors or markers, or that

these mitotic regulators signal EMT and/or lead to metastasis through chromo-

some instability (CIN), centrosome amplification (CA), or independently of E2Fs.

(A color version of this figure is available in the online journal.)

1424 Experimental Biology and Medicine Volume 244 November 2019
...............................................................................................................................................................



(E2F4-E2F8) leads to the deregulation of mitotic kinases
such as NEK2A and Mps1/TTK and/or mitotic regulators
such as SGO1 (Figure 1). In turn, these mitotic regulators
signal EMT transcription factors and EMT markers (and
plenty of studies have been published showing that these
mitotic regulators signal EMT). EMT modulation, in turn,
leads to invasion and metastasis. As discussed previously,
EMT is a complex cellular process that facilitates invasion
and migration to distant sites through cytoskeleton remod-
eling and increased expression and activity of metallopro-
teases (MMP) that facilitate metastasis. Likewise, we cited
several studies that have shown that miRNAs promote
EMT through the E2Fs. Therefore, an alternative model is
that E2Fs signal EMT independently of these mitotic regu-
lators. Similarly, it is possible that these mitotic regulators
signal EMT independently of the E2Fs. In our model, we
present two alternatives. The first is that these mitotic reg-
ulators signal EMT transcription factors or EMT markers
independently of E2Fs or under the regulation of other
genes not considered here. The second is that these mitotic
regulators lead to chromosome instability and centrosome
amplification leading to the formation of pre-invasive
structures and eventually metastasis.

Thus, it remains some questions to be answered in order
to elucidate the mechanism by which E2Fs, mitotic regula-
tors, and EMT intertwine to lead to metastasis. EMT also
leads to therapy resistance, stemness, and tumor heteroge-
neity; therefore, understanding the molecular mechanisms
that underline this process is critical to improving current
cancer therapies.
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