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Abstract
Betaglycan and endoglin, membrane-bound co-receptors of the TGF-b family, are required

to mediate the signaling of a select subset of TGF-b family ligands, TGF-b2 and InhA, and

BMP-9 and BMP-10, respectively. Previous biochemical and biophysical methods sug-

gested alternative modes of ligand binding might be responsible for these co-receptors

to selectively recognize and potentiate the functions of their ligands, yet the molecular

details were lacking. Recent progress determining structures of betaglycan and endoglin,

both alone and as bound to their cognate ligands, is presented herein. The structures reveal

relatively minor, but very significant structural differences that lead to entirely different

modes of ligand binding. The different modes of binding nonetheless share certain com-

monalities, such as multivalency, which imparts the co-receptors with very high affinity for

their cognate ligands, but at the same time provides a mechanism for release by stepwise

binding of the signaling receptors, both of which are essential for their functions.
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TGF-b family signaling

Cell signaling proteins of the TGF-b family have integral
roles in nearly all aspects of metazoan biology, from regu-
lating early embryonic patterning1,2 and organizing
the development of tissues and organs,3 to maintaining
tissues4–6 and regulating cellular growth7 and metabolism8

in adults. Compared with proteins of the Wnt and
Notch signaling families, which also have essential roles

in development and maintaining homeostasis, the TGF-b
family has been even more fruitful in its evolution,

with five family members in Caenorhabditis elegans,

seven in Drosophila melanogaster, and 33 in humans.9

Signaling proteins of the family, commonly referred to as

ligands, can be broken down into three subfamilies based

on their phylogeny,9 the bone morphogenetic (BMP) and

growth and differentiation factor (GDF) subfamily, the

activin (Act) subfamily, and the eponymous TGF-b
subfamily.

Compared to most other signaling families, the TGF-b
family has a relatively simple signaling pathway in which a
dimeric signaling ligand comprised of two cystine-knotted
growth factor monomers tethered together in most, but not
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all cases, by a single inter-chain disulfide bond (Figure 1(a))
assembles structurally similar, functionally distinct single
pass receptor kinases, known as type I and type II recep-
tors, into a hetero-tetrameric receptor complex (Figure 1
(b)). Close spatial proximity of the two receptor types in
the context of the receptor heterotetramer leads to a trans-
phosphorylation cascade in which the constitutively active
type II receptor kinase phosphorylates and activates the
autoinhibited type I receptor kinase;10 the active type I
receptor binds and phosphorylates the receptor regulated
Smads (R-Smads), which in turn form a heterotrimeric
complex with the co-mediator Smad, Smad4, that translo-
cates to the nucleus to effect transcription of target genes
with Smad binding elements.11,12 Smads, which bind DNA
directly through their C-terminal MH2 domain, do so
weakly and are thus dependent on other co-activators
and co-repressors to effect transcriptional responses.13

Such a dependence on co-activators and co-repressors, cou-
pled with their variation from cell to cell, underlies the

strong cell- and context-dependent activities characteristic
of signaling ligands of the family.14

Mechanisms for diversification of TGF-b
family signaling

Compared to the 33 signaling ligands in humans, there are
far fewer receptors, with just seven type I and five type II
receptors.9 In addition, the type I receptors of the family
couple to and activate only two classes of R-Smads,
R-Smads 1, 5, 8 and R-Smads 2,3, that target distinct pro-
moter elements. Type I receptors known as activin-like kin-
ases 1, 2, 3, and 6 (Alk1, Alk2, Alk3, and Alk6) couple to
activate R-Smads 1, 5, and 8, and the type I receptors Alk4,
Alk5, and Alk7 couple to activate R-Smads 2 and 3.15

Interestingly, most ligands of the BMP/GDF sub-class
bind type I receptors that activate Smads 1, 5, and 8,
while ligands of the activin and TGF-b sub-classes bind
type I receptors that activate Smads 2 and 3,16 and thus

Figure 1. TGF-b family proteins and their canonical Smad signaling mechanism. (a) Structure of a representative TGF-b family member, TGF-b1, with one of the

monomers in red and the other in blue (PDB 1KLC). The terms used to describe the hand-like structure of one of the monomers are shown. (b) Structure of a

representative type I:type II receptor heterotetratmeric complex; the extracellular component of the complex corresponds to TGF-b1 bound to the ectodomains of the

type I and type II signaling receptors (TbRI and TbRII, shaded magenta and orange, respectively; PDB 3KFD). The type I and type II kinase domains shown correspond

to those of the TGF-b type I and activin type IIB receptors (PDB 1IAS and 2QLU, respectively). The positioning of the kinase domains relative to one another are not

experimentally determined. Two representative pro-complex structures, that of pro-TGF-b1 (c) and pro-activin A (d) (PDB 3RJR and 5HLZ). (A color version of this

figure is available in the online journal.)
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the ligands and receptors appear to have co-evolved to gen-
erate two functionally distinct classes of signaling.
Importantly, while this represents an important mechanism
to increase functional diversity, it alone is insufficient to
explain the diverse functions of the 33 TGF-b family pro-
teins in humans.

Considerable efforts have been made over the past 10 to
15 years to better understand the mechanisms that engen-
der the proteins of the TGF-b family with their distinctive
activities in vivo – these can be broadly characterized as
follows: (a) regulatory pro-domains which block receptor
binding sites, but which bind the ligands from low to high
affinity, thus conferring varying degrees of latency
(Figure 1(c) and (d)),17–20 (b) soluble or membrane-bound
ligand-specific binding proteins that can either antagonize
or potentiate receptor complex assembly and signaling,9,21

(c) non-signaling complexes, such as between activin A,
ActRII/ActRIIB, and Alk2, that antagonize signaling of
other ligands, such as BMP-4, -7, and -9, that bind and
signal through a common receptor,22 (d) assembly of
mixed receptor complexes with ligand homodimers, such
as between TGF-b1, TbRII, and the type I receptors Alk1
and Alk523,24 or Alk2 and Alk5,25 or (e) alteration of how a
particular cell or group of cells interprets a given ligand,
even if the ligand activates the same sub-class of R-Smads.
Several mechanisms have been shown to be responsible for
the latter, including (a) distinct affinities, and thus distinct
ligand–receptor dynamics for different ligand–receptor
pairs that leads to distinct cellular responses26 and (b)
ligand heterodimers capable of binding two different type
I receptors that activate the same class of R-Smads, but for
reasons similar to those above, distinct cellular responses.27

Owing to space constraints, it is impossible in this mini-
review to describe each of the mechanisms enumerated
above, nonetheless the authors refer readers to several
other comprehensive reviews that covers these
topics,9,21,28 including the full-length review included in
this volume by Goebel et al. In this mini-review, the focus
is on recent advances in the structural biology of two struc-
turally homologous co-receptors of the TGF-b family, beta-
glycan and endoglin, and how subtle, but critical
differences in their structures, engender themwith the abil-
ity to recognize and discriminate between distinct subsets
of TGF-b family ligands. In the course of this review, we
discuss probable mechanisms by which this imparts the
ligands they bind with their distinct functions in vivo.

Betaglycan and endoglin and their cognate
ligands

Betaglycan and endoglin were both initially discovered by
affinity labeling experiments in which cells were exposed to
radiolabeled TGF-b1 and a chemical crosslinking
reagent.29–31 Both were found to be glycoproteins of rela-
tively high molecular weight (ca. 80–90 kDa for the core
protein), but in contrast to betaglycan, which is found as
a monomer and expressed in a variety of cell types, endo-
glin is a disulfide-linked dimer and is expressed almost
exclusively on vascular endothelial cells, which express
little to no betaglycan. Cloning of the genes encoding

betaglycan32,33 and endoglin34 showed that they had the
same overall domain structure, consisting of an N-terminal
signal peptide, a large ectodomain, a single-spanning trans-
membrane helix, and short (ca. 40 amino acid) cytoplasmic
tail (Figure 2(a) and (b)). Sequence comparisons show they
are homologous over their entire length, yet there is signif-
icant variation, with the highest identity in their transmem-
brane (73%) and cytoplasmic (61%) domains, and the
lowest in the N- and C-terminal portions of the ectodomain
(20–21%). Sequence analysis showed that the ectodomain
can be roughly divided into two halves, with the
membrane-distal N-terminal half having no identifiable
homology to other proteins, and the membrane-proximal
C-terminal half having identifiable homology to the zona
pellucida (ZP) family of proteins.35 Betaglycan and endo-
glin both undergo proteolytic shedding, and thus can be
found either membrane-bound or soluble.32,36 In this
mini-review, the focus is the membrane-bound forms as
these are the ones that most directly affect receptor complex
assembly and signaling; readers are referred to other
reviews for a discussion of the soluble forms.28,37

Endoglin, although initially identified as a receptor for
TGF-b1 based on affinity labeling studies, was subsequent-
ly shown to bind the TGF-b family ligands BMP-9 and
BMP-10 with high affinity.38,39 In addition to binding endo-
glin, BMP-9 and -10 were also shown to bind the TGF-b
family type I receptor Alk1 with high affinity, but poorly
to other type I receptors, such as Alk3 and Alk6.39–41 This
was an important discovery as this pattern of binding was
the opposite of that found for most BMPs, which bind type I
receptors such as Alk3 and Alk6 with high affinity, but bind
poorly to Alk1.40 Together with the finding that most
patients suffering from the vascular disorder hereditary
hemorrhagic telangiectasia have mutations in either endo-
glin or Alk1, this led to the realization that endoglin and
Alk1 were receptors for BMP-9 and BMP-10 in the vascular
endothelium and that this induced signaling required for
normal development and maintenance of the vasculature.5

Figure 2. Domain structure of betaglycan and endoglin. Domain structures of

betaglycan (a) and endoglin (b). Domains responsible for directly contacting the

ligands they bind are indicated. Vertical lines specify amino acid identity between

the respective domains. (A color version of this figure is available in the online

journal.)
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Betaglycan was shown to bind all three TGF-b isoforms
with near nanomolar affinity, but with a slight preference
for TGF-b2,42 the TGF-b isoform which binds TbRII with an
affinity 200–500 fold weaker than that of TGF-b1 and -b3
due to substitution of arginine residues with lysine in the
loops connecting fingers 1–2 and 3–4 that engage acidic
(Asp, Glu) residues on TbRII.43–45 Because of betaglycan’s
high affinity for the TGF-bs, and because it was shown to
potentiate cellular responsiveness to TGF-b2 by 100- to 500-
fold compared to cells that lack betaglycan, it was desig-
nated as the TGF-b type III receptor, TbRIII, and ascribed
the role of co-receptor,32,46 that is a cell-surface receptor that
potentiated the assembly of the signaling complex, but
itself did not directly participate in signal transduction.
Genetic studies in mice provided additional direct support
for betaglycan’s co-receptor function, as both the TGF-b2
and betaglycan null mice were inviable and shared signif-
icant phenotypic similarities, including severely impaired
heart and liver development.47–49

Betaglycan has also been shown to bind to the a-subunit
of the TGF-b family heterodimer inhibin A (InhA) and to
potentiate its ability to antagonize signaling of activin A
(ActA), and thus production of follicle stimulating hor-
mone b (FSH-b) in the anterior pituitary.50 Betaglycan’s
antagonism has been proposed to derive from its ability
to potentiate binding of the activin type II receptor,
ActRII, or the closely related activin type IIB receptor,
ActRIIB, to the InhA b-subunit, and thus sequester ActA’s
type II receptors, ActRII and ActRIIB, in a ternary complex
incapable of recruiting a type I receptor50–52 (Figure 3(a)).
Recent genetic studies in mice in which betaglycan was
ablated in the pituitary had phenotypic characteristics
largely consistent with its proposed mechanism of antago-
nism, yet only InhA, but not inhibin B (InhB), suppression
of FSH-b was impaired in cultured pituitaries of the beta-
glycan knockout mice.53 Current genetic data therefore
supports a role for betaglycan in InhA-mediated antago-
nism of activin in the anterior pituitary, but another mech-
anism might be responsible for InhB antagonism.
Betaglycan has also been shown to bind several BMPs
and GDFs, including BMP-2, BMP-4, and GDF-5, and to
influence their signaling,54 although unlike TGF-bs and
inhibins, this has been investigated using only cell-based
methods and hence is not as deeply understood.

Biochemical insights in endoglin-mediated
potentiation of BMP-9/-10 signaling in the
endothelium

To investigate the mechanism by which endoglin engages
BMP-9 and BMP-10, binding studies were carried out with
the recombinant full-length endoglin ectodomain, which
similar to cell-surface endoglin, is produced as a
disulfide-linked dimer.55,56 These studies showed that the
full-length dimeric endoglin binds BMP-9 and BMP-10
dimers in a manner that blocks the type II receptor binding
site on the knuckle of the ligand, but leaves the wrist epi-
tope, where the type I receptor Alk1 had been previously
shown to bind,57 unoccluded. These findings led to the
model shown in Figure 4 in which BMP-9 or BMP-10 is

captured from the blood by endoglin and in turn binds
Alk1. One of the three type II receptors, ActRII, ActRIIB,
or BMPRII, bind and displace endoglin to form the full type
I, type II receptor signaling complex. Structures of the
endoglin orphan and ZP-C domains, as well as the 2:1 com-
plex formed between the orphan domain and a BMP-9
homodimer, were recently determined and are discussed
in further detail below.58

Biochemical insights into betaglycan-
mediated potentiation of type II receptor
binding

Because of betaglycan’s importance in potentiating assem-
bly of the signaling complex, and because of the additional
finding that b-arrestin associates with betaglycan’s C-ter-
minal cytoplasmic tail and can lead to internalization of
TGF-bs and their receptors,59,60 considerable attention has
been directed toward understanding how betaglycan
engages its ligands. Based on initial affinity labeling experi-
ments in which a ternary complex could be detected
between TGF-b1, TbRII, and betaglycan, but not also a qua-
ternary complex that additionally included TbRI, it was
proposed that betaglycan potentiates TGF-b signaling by
a handoff mechanism, in which it first binds the ligand
with high affinity, and once bound, potentiates TbRII bind-
ing.46 Binding of TbRII is proposed to promote the binding
and recruitment of TbRI, which in turn leads to the dis-
placement of betaglycan, and assembly of the full type I-
type II receptor signaling heterotetramer (Figure 3(b)).

Though the structure of betaglycan bound to TGF-b has
not been determined, considerable other biochemical and
structural data have accrued that lend support to this
model. Through studies of domain deletions, it has been
shown that both the N-terminal domain, which initially
was named the endoglin-like domain, but which was
later referred to as the orphan domain, and the membrane
proximal domain, which was initially named the
uromodulin-like domain, but was later referred to as the
ZP domain, both directly bind the ligand but do not com-
pete with one another, and thus occupy distinct sites on the
ligand42,61 (Figure 2(a)). Based on additional deletion con-
structs, it was shown that only the C-terminal half of the ZP
domain was required for ligand binding.52 Binding studies
with the purified full-length betaglycan extracellular
domain, as well as the purified orphan and C-terminal por-
tion of the ZP domain (ZP-C) domains, provided further
detail by showing that betaglycan engages TGF-b homo-
dimers asymmetrically with an overall 1:1 stoichiometry
and fully blocks one of the TbRII binding sites via its ZP-
C domain, but leaves the other site unoccupied.62 Based on
additional measurements by the same group, (a)
betaglycan-bound TGF-b was shown to bind one molecule
of TbRII and to do so with increased affinity relative to
TGF-b alone, and (b) the orphan domain had to be dis-
placed to allow TbRI to bind. Based on these findings, a
more detailed hand-off mechanism was proposed in
which betaglycan functions to bind and concentrate
TGF-b2 on the cell surface, and thus promote the binding
of TbRII by membrane-localization effects and allostery62
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(Figure 3(c)). The proposed mechanism further suggests
that the transition to the signaling complex is mediated
by the recruitment of TbRI, which displaces the betaglycan
orphan domain. The binding and recruitment of TbRI,
together with the simultaneous displacement of the
orphan domain, is likely driven by direct contact between
TbRI:TbRII, as this was demonstrated previously in the
structures of the TGF-b3:TbRII:TbRI and TGF-b1:TbRII:
TbRI ternary complexes (Figure 1(b), red dashed outline)
and was shown to provide more than half of the total bind-
ing energy for binding and recruitment of TbRI.63,64

Though the structure of the TGF-b:betaglycan complex
has not yet been reported, recent structural data described
below, including NMR-based identification of the

betaglycan ZP-C binding site on TGF-b2,65 as well as the
X-ray structures of the betaglycan orphan domain and beta-
glycan ZP-C domain,66–68 provides further detail that sup-
ports the model shown in Figure 3(c).

Endoglin structure and proposed mechanism

Structures of the human endoglin orphan and ZP-C
domains, as well as a 2:1 complex between the endoglin
orphan domain and BMP-9, were recently determined
using X-ray crystallography.58 Endoglin’s orphan domain
is comprised of two tandem b-sandwich domains con-
nected by two antiparallel b-strands (Figure 5(a)); this
structure was not represented by any structures previously

Figure 4. Mechanism for endoglin-potentiated type I receptor binding. Proposed mechanism for endoglin-potentiated BMP-9/-10 receptor complex assembly.

(A color version of this figure is available in the online journal.)

Figure 3. Mechanisms for betaglycan-potentiated type II receptor binding. (a) Proposed mechanism for betaglycan-potentiated antagonism of activin A by InhA.

Proposed mechanisms for betaglycan-potentiated TGF-b2 receptor complex assembly, as initially proposed based on affinity labeling46 (b) or later proposed based on

extensive direct and competition binding studies62 (c). (A color version of this figure is available in the online journal.)
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deposited into the protein data bank and was somewhat
unusual in that its overall architecture consisted of a
strand-bend-strand that began in domain 1 (O-D1), and
then extended into domain 2 to complete the domain 2
b-sandwich; upon exiting the last b-strand of domain 2,
the pattern repeated, thereby generating the full two
domain structure connected by two antiparallel b-strands
(Figure 5(a) and (b)). Sequence analysis shows that the two
strand-bend-strand-b-sandwich motifs share 18% sequence
identity, suggesting this arose as a result of an in-frame
gene duplication.

Structure of the 2:1 orphan domain:BMP-9 complex
shows that orphan domain engages the ligand symmetri-
cally by forming a super b-sheet with finger 4 of the ligand
through an exposed b-strand, b6, in O-D1 (Figure 5(c)).

Stabilization of this mode of binding is provided in two
ways – first by residues extending from OD-1 b-strand 7
to form additional contacts with the backside of finger 4 of
the growth factor, and second due to avidity since both full-
length endoglin and BMP-9 are covalent dimers and bind in
a bivalent manner. Such a manner of binding is consistent
with that expected from the previous binding studies,55,56

namely that binding of the type II receptors ActRII,
ActRIIB, and likely BMPRII as well, will be blocked by
binding of endoglin, while binding of the type I receptor
Alk1, will not be blocked (as inferred by comparing orphan
domain contact residues with BMP-9 in this structure, vs.
ActRIIB and Alk1 contact residues with BMP-9 in the pre-
viously determined structure of BMP-9 bound to ActRIIB
and Alk157).

Figure 5. Structure of the endoglin and its complex with BMP-9. Structure (a) and schematic (b) of the endoglin orphan domain (PDB 5I04). The strand-bend-strand

motif that exits each of the domains and extends into the other domain is shaded in lavender. (c) Structure of the 2:1 complex formed between the endoglin orphan

domain and BMP-9 dimer. Pairing of the orphan domain 1 edge b-strand, b6, with the exposed finger 4 (F4) b-strand of the ligand is depicted in the inset (PDB 5HZW).

(d) Structure of the covalent endoglin ZP domain homodimer. Structure shown was modeled based on the experimentally determined endoglin ZP monomer structure

(PDB 5HZW) and by positioning the free cysteine residues responsible for covalent dimer formation (Cys516 and Cys582, approximate locations of which are shown in

red and magenta spheres, respectively) within a distance compatible with disulfide bond formation. (e) Proposed model for the complex between full-length endoglin

and BMP-9. Model was constructed from the experimentally determined structure of the 2:1 endoglin orphan domain:BMP-9 dimer complex (PDB 5HZW) and the

model for the endoglin ZP dimer shown in panel D. (A color version of this figure is available in the online journal.)
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Endoglin’s ZP domain, which harbors the cysteine resi-
dues responsible for covalent dimerization, was produced
by recombinant overexpression in mammalian cells
and was secreted as a mixture of monomer and covalent
dimer. In the course of crystallization, the monomeric form
selectively crystallized, and thus it was necessary to infer the
sites of covalent dimerization based on surface exposed cys-
teines in the structure, together with dimerization assays
with cysteine mutants. Interestingly, this identified two cys-
teine residues responsible for covalent dimerization of the ZP
domain, Cys516 located in an exposed loop close to the
C-terminal portion of ZP-C domain, aswell as Cys,582 located
in the structurally disordered juxtamembrane region.
Informed by the identification of these two cysteines, Saito
et al. constructed a dimericmodel for the ZP domain inwhich
the two cysteines were within the proper distance for disul-
fide bond formation;58 this yielded the V-shaped structure,
reproduced in Figure 5(d), in which each of the slightly
curved arms of the Vare formed by the two tightly connected
immunoglobulin-like domains that comprise the ZP domain.

Success in determining both the orphan domain struc-
ture, and the ZP domain structure, allowed construction of
a model for the full endoglin:BMP-9 complex (Figure 5(e)).
Positioning of the orphan domain:BMP-9 complex relative to
the ZP dimer in this model was guided by knowledge that
the ZP domain does not directly contact the ligand, and
while this eliminates structures where the ligand would
come in direct contact with the ZP domain, it nonetheless
leaves significant uncertainty. In the model presented by
Saito et al., the ligand was positioned deeply into the V
between the two ZP domains; this is plausible because the
ligand can be readily accommodated without contacting the
ZP domain, but also because it positions the C-terminus of
the orphan domain, which emerges from the OD-1, at a dis-
tance from the N-terminus of the ZP domain that can be
readily accommodated with the number of structurally dis-
ordered residues present between these two domains.

Overall, the endoglin structures that have been reported
are not only consistent with the biochemical data and
models for binding that have been previously reported,
but they also shed important new details on how endoglin
engages BMP-9 in an antibody-like manner, with the ZP
domain being homologous to the Fc domain and the
orphan domain being homologous to the Fab domain –
this manner of binding allows endoglin to extend signifi-
cantly outward and capture BMP-9 and BMP-10 with high
affinity due to avidity. One other advantage of bivalent
binding is this also provides a mechanism for subsequent
release, which is essential as endoglin must be fully dis-
placed so that the ligand can bind two molecules of Alk1,
and two molecules of type II receptor, to assemble the full
heterotetrameric signaling complex.

Betaglycan structure and proposed
mechanism

Structures of the full-length betaglycan extracellular
domain bound to TGF-b, or the ZP-C domain bound to
InhA, are still lacking, yet there has been progress over
the past five years that provides additional detail as to

the precise structure of the complexes. One such effort
employed NMR to identify the precise binding site on
TGF-b2 for the betaglycan ZP-C domain.65 To simplify the
spectra and to obtain resolved signals in the context of the
highmolecular weight TGF-b2:ZP-C complex, these studies
were performed by preparing deuterated Ile, Leu, Val
13C-methyl labeled TGF-b2 and in turn titrating this with
unlabeled ZP-C. In these studies, the signals that were most
strongly perturbed all mapped to the underside of fingers
2, 3, and 4, and extended from the base of the heel helix to
the tip of fingers 1–2 and 3–4, where TbRII binds (Figure 6
(a)). In order to validate this putative binding site, residues
were substituted both within the binding site, but also on
the outer surface of the knuckles of fingers 3 and 4, and the
results obtained were fully consistent with the binding site
identified by NMR, with the largest effects upon substitu-
tion of residues, such as Ile33, Ile92, and Glu99, on the under-
side of the fingers, but little to no effects upon substitution
of any of the knuckle residues (Figure 6(b)).

Included within this binding site were three residues,
Ile92, Lys97, and Glu99, that are present in TGF-b1, -b2,
and -b3 and inhibin a, but are of completely different char-
acter, that is acidic versus basic, hydrophobic versus
charged, in almost all other TGF-b family members
(Figure 6(d)). Importantly, although this binding site differs
from the one identified in the InhA a subunit based on
analysis of a large collection of InhA a subunit variants
and functional assays,69 it nonetheless includes several of
the same residues and is in the same region of the fingers,
but is located on the inner surface of the fingers, rather than
on the outer (knuckle) surface. It is therefore likely that the
binding site for ZP-C in TGF-b2 and the inhibin A a subunit
are the same and are located on the inner surface of the
fingers as shown by the NMR data, though this still
needs to be validated for InhA. It should also be noted
that the identification of this new binding site provides a
potential explanation for the observation that betaglycan
mediates InhA, but not InhB, antagonism of activin in the
pituitary,53 since the NMR data showed that while most of
ZP-C’s contact was with one monomer, there was nonethe-
less limited contact with the heel helix of the adjoining
monomer. It is therefore possible that the betaglycan
ZP-C domain is sensing amino acid differences in the
heel helix of InhA versus InhB and as a consequence, func-
tioning to engender InhA with activin-antagonist activity,
but not InhB. In summary, the binding site for the ZP-C
domain that has been identified is consistent with the pre-
vious observation that the ZP-C domain competes with
TbRII, and thus is responsible for blocking one of the
TbRII sites in the context of the full betaglycan:TGF-b2 com-
plex, but it also provides insights as to how betaglycan
selectively recognizes the ligands its targets, possibly
including InhA versus InhB.

In the proposed mechanism for inhibin-mediated antag-
onism of activin, the betaglycan ZP-C domain binds to the
a-subunit, thereby tethering inhibin to the membrane and
in turn promoting the binding of ActRII or ActRIIB to the
inhibin b subunit. Inhibins are known to be unable to bind
and recruit type I receptors, such as ActRIB (Alk4) to initi-
ate Smad2,3 signaling, but mechanism for the inhibition of
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type I receptor binding is not fully understood. In 2012, Zhu
et al. showed that the extended N-terminus of the inhibin
a-subunit is essential for inhibiting ActRIB binding, though
whether this does so by blocking ActRIB binding at the type
I site that lies at both a/b subunit interfaces, or only one of
the a/b interfaces, was unclear. Importantly, the identifica-
tion of the ZP-C binding on the underside of the fingers
described above65 provides an explanation for blocking of
type I receptor binding at least at one of the a/b interfaces
as this binding site overlaps extensively with that of the
type I receptor site, which for all known type I receptors
of the family, includes residues both from the underside of
the fingers and from the heel helix of the adjoining mono-
mer. It is therefore conceivable that binding of type I recep-
tors to inhibin is blocked at one of a/b interfaces by the
extended N-terminus of the a-subunit and the other by
the betaglycan ZP-C domain. In this way, the betaglycan
ZP-C has two roles, one to capture on the inhibin on the
membrane and promote type II receptor binding to the
b-subunit, and another to prevent binding and recruitment

of the type I receptor ActRIB. Structures of the ZP-C
domains of rat and mouse betaglycan have been deter-
mined, and as shown, these are highly similar to one anoth-
er, as well as structures of other ZP domain structures that
have been determined, including endoglin ZP-C67,68

(Figure 6(c)). Several different regions have been identified
in the ZP-C domain that might provide the binding site for
TGF-b/Inhibin a, though these have not been recon-
ciled.67,68 One of these lies in the A-B loop, while the
other lies in the F-G loop, both of which are highlighted
in the models shown in Figure 6(c). One possible strategy
to reconcile these alternative binding sites, but as well to
provide detailed structural information to build a model of
the TGF-b2:ZPC complex, is to employ the same type of
NMR approach that was used to identify the ZP-C binding
site on TGF-b2. One other strategy would be to co-
crystallize TGF-b2 with ZP-C or the full betaglycan extra-
cellular domain with TGF-b2, though these efforts have
been hampered either by limited solubility or by the high
degree of flexibility due to the disordered linker that

Figure 6. Binding site on TGF-b2 for the betaglycan ZP-C domain. (a) Structure of TGF-b2 with methyl-bearing residues in deuterated Ile, Leu, Val 13C-methyl

protonated TGF-b2 identified by NMR that shifted either significantly (red) or not (blue) upon titration with unlabeled betaglycan ZP-C65 (PDB 2TGI). (b) Structure of

TGF-b2 with residues which led to a significant disruption (red) or not (blue) of betaglycan ZP-C binding upon substitution with alanine (as assessed by surface plasmon

resonance with immobilized TGF-b2 single amino acid variants)65 (PDB 2TGI). (c) Structures of rat (left) or mouse (right) betaglycan ZP-C, with the proposed binding

sites in the A-B or F-G loops highlighted in magenta and orange, respectively67,68 (PDB 3QW9 and 4AJV). (d) Alignment of residues from the finger region of all TGF-b
family growth factors in humans; positions highlighted in color were either shown to shift upon titration of deuterated methyl-protonated TGF-b2 with unlabeled ZP-C or

to be affected in their binding affinity for ZP-C upon substitution. Hydrophobic residues are colored green, acidic residues are colored red, basic residues are colored

blue, and neutral residues are colored purple. Boxed residues highlight those that are either entirely (Lys97) or mostly unique (Val92/Ile92 and Glu99) to TGF-bs and Inh a.
Figure is adapted and reproduced with permission from Henen et al.65 (A color version of this figure is available in the online journal.)
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connects the orphan and ZP domains (A Hinck, unpub-
lished observation), the latter being similar to the challenge
encountered with full-length endoglin.58

Structure of the betaglycan orphan domain was recently
reported, although rather than crystallizing human or rat
betaglycan, which have been extensively characterized, the
authors crystallized zebrafish betaglycan orphan domain,
owing to its significantly improved crystallization propen-
sity.66 Overall as one would expect based on roughly 20%
sequence identity between betaglycan and endoglin, the
structure of the betaglycan orphan domain is similar to
that of endoglin, albeit with a somewhat different orienta-
tion of the two b-sandwich domains relative to one another
(Figure 7(a)). One structurally minor, but potentially

significant difference between the two orphan domains, is
the insertion of a short a-helix-b-strand motif, following
b-strand 7 in O-D1 (Figure 7(b)). Owing to the pairing of
the newly inserted b-strand with the exposed b-strand 6, it
would be expected to prevent a similar manner of binding
as the endoglin orphan domain, due to steric clashes with
the ligand (Figure 7(c)). In order to investigate the possibil-
ity of an alternative manner of binding, Kim et al. carried
out binding studies with domain deleted constructs of both
TGF-b and the betaglycan orphan domain, and showed that
indeed the betaglycan orphan domain binds in a different
manner, specifically the betaglycan orphan domain recog-
nizes more than just the finger region of the ligand and it
requires both b-sandwich domains, not just O-D1, to

Figure 7. Structure of the betaglycan orphan domain and comparison with the endoglin orphan domain. (a) Side-by-side comparison of the overall structures of the

zebrafish betaglyan (left) and human endoglin (right) orphan domains, which aside from a significantly different orientation of the two b-sandwich domains, have similar

overall structures (PDB 6MZP and 5I04). (b) Superposition of domains 1 (top) and 2 (bottom) of zebrafish betaglycan (orange strands/blue helices) and human endoglin

(green strands and light blue helices) orphan domains. Superposition highlights additional helix-strand motif present in the zebrafish betaglycan orphan OD-1, but not

the human endoglin OD-1 (PDB 6MZP and 5I04, respectively). (c) Model of the interface between zebrafish betaglycan orphan domain and TGF-b2. Model was built

assuming the same manner of super b-sheet formation as that for the human endoglin orphan domain bound to BMP-9. Model highlights steric clashes (red ovals)

between the additional b-strand inserted in the betaglycan orphan domain and the b-strand that forms finger 4 of the ligand. (d) Model for the 1:2:1 TGF-b2:TbRII:
betaglycan orphan domain complex constructed using the program pyDockSAXS, fitted into the electron density calculated from the SAXS scattering curve of the

1:2:1 TGF-b2:TbRII:betaglycan orphan domain complex used to guide the docking. In the model shown, the TGF-b2 monomers are depicted in orange and blue, TbRII
in green, and the betaglycan orphan domain in magenta. Figure is adapted and reproduced with permission from Figures 4 and 7 of Kim et al.66 (A color version of this

figure is available in the online journal.)
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engage TGF-b2 dimers with high affinity.70 On the basis of
these observations, together with small angle X-ray scatter-
ing data which provides low-resolution structural informa-
tion, models were constructed of the TGF-b:TbRII:orphan
domain complex. One of the models that best fit these con-
straints is shown in Figure 7(d), and as shown, the orphan
domain is nestled around the dimer, but in a manner that
does not interfere with binding of either molecule of TbRII.
Overall, the structure of the betaglycan orphan domain has
provided new structural details that likely account for the
alternative manner by which it engages its ligand com-
pared to endoglin, something previously hinted at based
on its altered stoichiometry of binding, but not directly
demonstrated through structural studies.

Summary

Overall, the picture that is emerging from the recent struc-
tural studies of betaglycan and endoglin, is that in spite of
their sequence and structural homology, they have evolved
alternative modes of binding and interfaces for binding
their cognate ligands. One point that is rather clear, as illus-
trated by the binding site on TGF-b for the ZP-C domain, is
that these alternative binding modes give rise to distinct
interfaces that provides opportunities for the co-receptors
to select surfaces that contain residues and motifs that are
unique to the ligands they target. One additional point
about these alternative modes of binding is that for both
co-receptors, the ligand is engaged through multiple points
of contact – for endoglin, through symmetric contacts of the
endoglin dimer with finger 4 of the ligand, while for beta-
glycan through the ZP-C domain and both orphan b-sand-
wich domains. One advantage of contacting the ligand in
this manner is that this not only provides high affinity bind-
ing, which is required for the functions of these two co-
receptors to “capture” and sequester the ligand on the
cell surface where it can in turn engage the signaling recep-
tors, but it also allows for displacement of the co-receptor
by step-wise binding of the signaling receptors.

Future directions

One of the future directions that must be obviously
addressed is determining the structures of betaglycan com-
plexed to TGF-b and InhA. One other future direction is
better understanding the mechanistic aspects of how the
co-receptors function in vivo – this is particularly relevant
for endoglin since on the one hand it is not clear why the co-
receptor is even required, given that the interaction
between BMP-9 and -10 and Alk1 is among the highest
affinity of all ligand:receptor pairs in the family.9,41,57 One
possible explanation, and area for future investigation,
would be to investigate whether endoglin is required for
other aspects not considered in the simplified biochemical
or cell-based assays that have been previously used, such as
extending outward into the lumen of the vessel through the
calyx to capture the ligand in the bloodstream, and in turn
to withdraw inward to hand off the ligand to the signaling
receptors. One other area of future investigation, potential-
ly relevant to endoglin and betaglycan, is the role that the

co-receptors might have in displacing the ligands from
their pro-domains – this might not be important for BMP-
9 given its limited latency,18 but might be for TGF-b2, given
that it is highly latent, but in contrast to TGF-b1 and -b3,
lacks an RGD motif in its pro-domain to facilitate integrin-
mediated activation.
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