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Abstract
Steatotic livers are more susceptible to ischemia/reperfusion injury, and increase the risk of

primary graft non-function after liver transplantation. The protective effects of berberine

have been described in various liver pathological models. However, it is unknown if ber-

berine exerts its beneficial action in steatotic donors undergoing liver transplantation. In the

present study, male Wistar rats were fed with high-fat diet (HFD) for 12weeks to induce

moderate steatotic liver. Then orthotropic liver transplantation was constructed. Berberine

(200mg/kg/d) was given intragastrically oneweek before liver transplantation. Thapsigargin

(TG) (0.2mg/kg) was administrated intravenously 24 h before liver transplantation. Liver

function, oxidative stress, and inflammatory cytokine were detected by biochemical or

histopathological analysis. The morphology of autophagosomes and endoplasmic reticu-

lum (ER) was observed by transmission electron microscopy. The expression of CHOP, BIP,

the phosphorylation of PERK, LC3-II/I, Beclin-1, and p62 were determined by Western blot assay. The co-localization of endo-

plasmic reticulum marker (KDEL) and autophagic protein (LC3B) was analyzed by immunofluorescence microscopy. The level of

reticulophagy hallmark (FAM134B) was determined by immunohistochemistry. Compared with HFDþ LT group, berberine ame-

liorated hepatocellular damage, decreased the oxidative stress level and inflammatory cytokine release. Simultaneously, berber-

ine inhibited the expression of both endoplasmic reticulum stress parameters and autophagy-related proteins. Additionally, the

co-localization of endoplasmic reticulum marker and LC3B was also reduced in HFDþBBRþ LT group. berberine down-

regulated the level of FAM134B. TG reversed the beneficial effects of berberine. Our study revealed that berberine exerts pro-

tective effects on steatotic livers undergoing transplantation by inhibiting endoplasmic reticulum stress-mediated reticulophagy.
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Introduction

Owing to the mismatch between organ donation and the
demand for liver transplantation, expanding the liver
donor pool is of vital importance. Among the common
types of organs from extended-criteria donors, the potential

use of steatotic livers has become a major focus of investi-
gation for transplantation.1,2 Unfortunately, more than half
of livers are considered as not suitable for transplantation
and will be discarded due to the presence of severe fatty
infiltration. Steatotic livers are more susceptible to ische-
mia/reperfusion (I/R) injury, which may lead to the high
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risk of primary graft non-function after liver transplanta-
tion.3 Some medicine has been proven effective in animal
studies but none of them has been applicated in clinical
liver transplantation.4,5

Endoplasmic reticulum (ER) is an important organelle
responsible for protein synthesis and assemblage. Under
pathological conditions, unfolded protein response (UPR)
would be activated by sustained accumulation of mis-
folded or unfolded proteins in the lumen of ER, that is,
ER stress. Numerous reports have suggested that ER
stress is critical in the pathophysiological development of
various diseases.6–9 In steatotic livers, ER stress has been
implicated as a major contributor of post-transplant
injury.10 But the exact down-stream mechanism involved
in the steatotic allograft injury remains unknown and
need to be further investigated.

Autophagy is a critical process responsible for maintain-
ing intracellular homeostasis by disassembling the detri-
mental cytoplasmic parts.11 However, uncontrolled
activation of autophagy may lead to irreversible cell
damage.12 Recent data indicate the crosstalk between ER
stress and autophagy.13 The distention of membrane
from ER or Glogi complex is the beginning of autophagy
initiation, which, in turn, is helpful for degrading mis-
folded proteins in ER. In aging adipose tissue, compro-
mised autophagy was linked to the increase of ER stress
and subsequent inflammation.14 Guo et al.15 found that ER
stress-triggered autophagy was involved in cocaine-related
neuroinflammation. However, the relationship between ER
stress and autophagy has not been fully clarified.

Berberine (BBR) is a compound derived from the
traditional Chinese medicine plants and has dramatically
therapeutic potential against inflammation, diarrhea and so
on.16,17 Clinical evidence suggested that BBR was a fantas-
tic cholesterol-lowering drug with its unique mechanism
different from statins.18 A large body of experimental
data has supported the notion that BBR preconditioning
attenuates I/R injury of various organs including kidney,
heart, and intestine.19–21 Our previous study found that
BBRmediated the protection of non-steatotic donors under-
going liver transplantation by activating Sirt1/FoxO3a
signaling pathway.22 But there is limited information avail-
able in identifying the action of BBR in steatotic livers
undergoing liver transplantation.

Taken together, our present study was aimed to evaluate
the beneficial effect of BBR on steatotic donor of rats after
liver transplantation and explore the underlying molecular
mechanisms in BBR-offered protection.

Materials and methods

Animals

All animal experiments were approved by the Committee
on the Ethics of Animal Experiments of Tianjin Medical
University. Male Wistar rats (sixweeks) were obtained
from the Military Medical Science Academy Laboratory,
Beijing, China. Animals were kept four each cage and
raised in a temperature-controlled environment with 12-h
light/dark cycle. Rats were fed with high-fat diet (HFD) or

standard diet (SD) for 12weeks to induce steatotic or non-
steatotic liver. HFD rats would show moderate fatty infil-
tration in hepatocytes (40–60% steatosis). The ingredients of
HFD were documented in Supplementary Table 1.

Experimental design

Rats were randomly assigned into the following nine
groups (n¼ 6):

Group 1. SD. Rats with non-steatotic livers were sub-
jected to transverse laparotomy.

Group 2. SDþBBR. Rats with non-steatotic livers were
administrated with BBR (200mg/kg/day) intragastrically
for oneweek before the transverse laparotomy. The optimi-
zation of BBR treatment dosage was seen in Supplementary
Figure 1.

Group 3. SDþLT. Rats underwent liver transplantation
using non-steatotic donors.

Group 4. SDþBBRþLT. Rats with non-steatotic livers
were administrated with BBR (200mg/kg/day) intragastri-
cally for oneweek before liver transplantation as donors.

Group 5. HFD. Rats with steatotic livers were subjected
to transverse laparotomy.

Group 6. HFDþBBR. Rats with steatotic livers were
administrated with BBR (200mg/kg/day) intragastrically
for oneweek before the transverse laparotomy.

Group 7. HFDþLT. Rats underwent liver transplanta-
tion using steatotic donors.

Group 8. HFDþBBRþLT. Rats with steatotic livers
were administrated with BBR (200mg/kg/day) intragastri-
cally for oneweek before liver transplantation as donors.

Group 9. HFDþBBRþTGþLT. Rats with steatotic
livers were administrated with BBR intragastrically
(200mg/kg/day, oneweek) and thapsigargin (TG,
0.2mg/kg, intravenously 24 h before operation) before
liver transplantation as donors. A flow-chart of experimen-
tal design is shown in Figure 1.

Figure 1. Illustration of the experimental design. Animals were randomly

assigned into the following nine groups (n¼ 6). The rats were fed with standard

diet (SD) or high-fat diet (HFD) for 12weeks. BBR was intragastrically given at a

dose of 200mg/kg/day for oneweek. Liver transplantation was undergone after

given BBR. Thapsigargin (TG) was intravenously given at a dose of 0.2mg/kg for

24 h before operation.
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Establishment of rat liver transplantation model

The rat liver transplantation model was conducted without
hepatic artery reconstruction according to the report from
Kamada et al.23 The rats were anesthetized by intra-
peritoneal injection of phenobarbitone. Donor liver was
harvested in a standardized process including freeing
ligaments, ligating blood vessels, cannulating common
bile duct and perfusing with heparinized normal saline.
Then liver donors were excised and placed in 4�C normal
saline before transplantation. Recipient hepatectomy was
performed and donor liver was implanted by suturing
supra-hepatic and sub-hepatic vena cava, connecting
cuffs with the related vessels and inserting the stent of
bile duct. During the surgery, the average time for opera-
tion was 132� 27min and anhepatic phase (from vena
porta clamping to graft re-perfusion) was 15� 3min.24

Tissue collections and blood were collected 6 h after
reperfusion.

Determination of hepatic function

The blood (3mL) was collected from hepatic inferior cava
vena and centrifugated at 3000 r/min for 20min. Serum
was measured using an automated Biochemical Analyzer
(AU5400, Beckman Coulter) was used to determine
the level of alanine aminotransferase (ALT) and aspartate
aminotransferase (AST).

Assessing oxidative stress and
inflammation parameters

Liver tissues were homogenized in phosphate buffer saline
(PBS) and centrifugated at 14,000 r/min for 20min (4�C).
The supernatants were collected for detecting the concen-
trations of malondialdehyde (MDA), superoxide dismutase
(SOD), TNF-a, and IL-b by commercially assay kits.

Histopathologic examination

Liver tissues were fixed with 10% formalin dehydrated and
embedded in paraffin. The sections were dewaxed, hydrat-
ed, and stained with hematoxylin-eosin (HE) according to
standard protocols. Then the slides were observed under
optical light microscope. Histopathologic change of each
sample was evaluated by the same pathologist in a blinded
study. Hepatic damage was scored as described by Suzuki
et al.25 (Table 1).

Transmission electron microscopy

Liver samples were fixed in 2.5% glutaraldehyde overnight
and washed with PBS for three times. Then tissues were

dehydrated, embedded, fixed in 10% buffered glutaralde-
hyde and 1% osmic acid, and finally sliced. The ultrastruc-
ture of autophagosome and ER was observed under a
transmission electron microscope.

Immunofluorescence

Liver samples were incubated with anti-LC3B (1:1000,
Abcam) and anti-KDEL (1:100, Abcam) overnight at 4�C
followed by fluorescence secondary antibodies, anti-rabbit
Alexa 568 (1:300, CST), and anti-mouse Alexa 488 (1:300,
CST). The slides were counterstained with nuclear dye 40,6-
diamidino-2-phenylindole (DAPI) 10min before examined
under the fluorescence microscopy.

Immunohistochemistry

Liver specimens were fixed and embedded in paraffin.
After dewaxing and hydration, endogenous peroxidase
activity was quenched by 3% hydrogen peroxide for
15min. Then sections were blocked with 5% normal goat
serum for 20min. The slices were incubated with primary
antibody (anti-FAM134B, 1:1000) overnight. After washing,
the slices were incubated with secondary antibody at room
temperature for 15min. Sections were stained with DAB
kits. The FAM134B-positive cells with brown particles
were counted in at least 10 different images.

Western blotting

Equal amounts of protein lysates (50 lg) were separated by
sodium dodecyl sulfate polyacrylamide gel electrophoresis
and transferred to PVDF membranes. Membranes were
blocked in 5% skim milk for 1.5 h at room temperature
and incubated at 4�C overnight with primary antibodies
against PERK, p-PERK, CHOP, LC3II/LC3I, Beclin-1,
p62, and GAPDH. Then membranes were incubated with
horseradish peroxidase-conjugated secondary antibody
(1:2000, Abcam) for 1 h and visualized with enhanced
chemiluminescence reagents (Millipore, MA, USA).

Statistical analysis

The SPSS 22.0 software was used for descriptive and com-
parative statistical analysis. Histologic damage scores were
presented as median �interquartile range and Kruskal–
Wallis H test was used to calculate the significance of the
data. Other values were expressed as means� SD and ana-
lyzed by one-way ANOVA. Significant differences were
defined as P value less than 0.05 (two tailed).

Results

Effect of BBR pretreatment on hepatic injury after
steatotic liver transplantation

To investigate the effect of BBR on hepatic injury after stea-
totic liver transplantation, we initially evaluated the level of
serum ALT and AST. Compared with HFD group, liver
transplantation dramatically enhanced ALT and AST
levels in steatotic donors, which were reduced by BBR pre-
treatment (P< 0.05) (Figure 2(a) and (b)). Histological

Table 1. Suzuki scores for the assessment of hepatic damage.

Score Congestion Vacuolization Necrosis

0 None None Nonnecrotic cell

1 Minimal Minimal Single cell

2 Mild Mild 0%–30%

3 Moderate Moderate 30%–60%

4 Severe Severe >60%
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examination revealed that HFD group displayed micro-
and macro-vesicular steatosis scattered in the liver lobule
(P< 0.05). After liver transplantation, the steatotic donors
displayed severe sinusoidal congestion, necrosis, inflam-
matory infiltration with a dramatically higher Suzuki
score (P< 0.05). And a comparatively improved lobular
structure and the reduced damage score were observed in
steatotic grafts preconditioned with BBR (P< 0.05)
(Figure 3).

Effects of BBR on hepatic oxidative stress and
inflammation after steatotic liver transplantation

The activation of oxidative stress and inflammation is con-
sidered to be secondary to direct cellular damage resulting
from ischemic insult. Compared with HFD group, liver
transplantation elevated the expression of MDA with the
reduced SOD activity in steatotic grafts (P< 0.05).
Pretreatment with BBR drastically suppressed the oxida-
tive stress level in steatotic grafts after liver transplantation
(P< 0.05) (Figure 2(c) and (d)). Similarly, compared with
HFD group, the production of inflammatory factors
(TNF-a, IL-1b) was greatly increased in steatotic grafts
after liver transplantation. Pretreatment of BBR inhibited
the hepatic inflammatory reaction after steatotic liver trans-
plantation (P< 0.05) (Figure 2(e) and (f)).

BBR pretreatment inhibited the ER stress induced
autophagy in steatotic grafts after liver transplantation

To analyze the role of ER stress-mediated autophagy in the
salutary effects of BBR, the expression of ER stress param-
eters (p-PERK/PERK, CHOP, Bip) and autophagy-related
proteins was detected using Western blotting. Figure 4
showed that the level of CHOP, Bip, and the phosphoryla-
tion of PERK was significantly increased in steatotic grafts

after liver transplantation compared with HFD group,
which could be down-regulated after BBR pretreatment
(P< 0.05). Figure 5 showed the expression of autophagy-
related proteins in different groups. Compared with HFD
group, the ratio of LC3II/I, Beclin-1, and p62 expression
was concurrently increased in steatotic grafts after liver
transplantation. And BBR treatment could significantly
inhibit the level of autophagy, which was counteracted by
ER stress inducer TG (P< 0.05).

BBR treatment inhibited the selective autophagy of
ER in steatotic grafts after liver transplantation

Transmission electron microscopy revealed the accumula-
tion of autophagosomes and the reduction of rough ER
were induced in steatotic grafts after liver transplantation,
which could be reversed by BBR (Figure 6). Accordingly,
we hypothesized that autophagy mediated the degradation
of ER in steatotic grafts. To confirm the hypothesis, the
co-localization of ER (KDEL) and autophagy (LC3B) was
analyzed by double-immunofluorescence microscopy.
In Figure 7, the co-localization of ER and autophagy
appeared weak in SD group but was gradually stronger
in HFD group. Liver transplantation further enhanced the
co-localization of ER and autophagy. However, BBR pre-
treatment reduced the ER localization with LC3B, which
could be abolished by TG.

FAM134B is a kind of ER-resident receptor which specif-
ically binds to autophagy and facilitates ER degradation.
In our study, LT enhanced the expression of FAM134B in
steatotic livers compared with HFD group. Also, BBR pre-
conditioning significantly impedes the level of FAM134B,
which was reversed by TG (P< 0.05) (Figure 8). These
results indicated that BBR could inhibit reticulophagy in
steatotic grafts after liver transplantation.

Figure 2. BBR ameliorated the hepatic injury of steatotic donors undergoing liver transplantation. (a) ALT level. (b) AST level. (c) MDA concentration. (d) SOD activity.

(e) TNF-a level. (f) IL-1b level. The data were means� standard deviation. *P< 0.05 vs. SD group; þP< 0.05 vs. HFD group; &P< 0.05 vs. SDþLT group; #P< 0.05 vs.

HFDþLT group.
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Figure 3. BBR alleviated the pathological injury of steatotic donors undergoing liver transplantation. (a) Representative photomicrographs of liver samples with

hematoxylin–eosin staining (200�magnification). Yellow arrows indicated necrotic cells and inflammatory infiltration. Black arrows indicated steatotic hepatocytes. (b)

Suzuki scores of liver samples. The data were means� standard deviation. *P< 0.05 vs. SD group; þP< 0.05 vs. HFD group; &P< 0.05 vs. HFDþLT group. (A color

version of this figure is available in the online journal.)

Figure 4. Preconditioning with BBR rescued the ER stress in steatotic donors undergoing liver transplantation. (a) Western blotting images of PERK phosphorylation,

CHOP and Bip. (b) Relative ratio of p-PERK/PERK. (c) Relative intensity of CHOP. (d) Relative intensity of Bip. The data were means� standard deviation. *P< 0.05 vs.

SD group; þP< 0.05 vs. HFD group; &P< 0.05 vs. HFDþLT group.
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Figure 5. BBR attenuated the ER stress-induced autophagy in steatotic donors after liver transplantation. (a) Western blotting images of Beclin-1, LC3, and p62.

(b) Relative ratio of LC3-II/I. (c) Relative intensity of Beclin-1. (d) Relative intensity of p62. The data were means� standard deviation. *P< 0.05 vs. SD group; þP< 0.05

vs. HFD group; &P< 0.05 vs. HFDþLT group; #P< 0.05 vs. HFDþBBRþLT group.

Figure 6. Effects of BBR on the ultrastructure of autophagosomes and ER under transmission electron microscopy (15,000�magnification). Yellow arrows indicated

autophagic vacuoles. Red arrows indicated ER. The data were means� standard deviation. *P< 0.05 vs. SD group; þP< 0.05 vs. HFD group; &P< 0.05 vs. HFDþLT

group; #P< 0.05 vs. HFDþBBRþLT group. (A color version of this figure is available in the online journal.)
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Discussion

Although pharmacological studies have demonstrated the
therapeutic actions of BBR on hepatic steatosis or I/R
injury,22,26 the benefits of BBR on steatotic grafts after
liver transplantation remain poorly understood. Several
findings in the present study help to elucidate the protec-
tive mechanism of BBR against I/R injury after steatotic
liver transplantation. Firstly, BBR could ameliorate hepatic
injury in steatotic livers undergoing transplantation by
inhibiting the level of oxidative stress and inflammation.
Secondly, this protective action might be attributed to the
inhibition of ER stress-mediated reticulophagy.

A large body of studies have proved the multitude
biological effects of BBR including anti-hyperglycemic,
anti-tumorigenesis, and anti-hyperlipidemia activi-
ties.18,27,28 Clinical evidence demonstrated that BBR treat-
ment markedly decreased serum levels of lipid metabolites
in patients with nonalcoholic fatty liver disease.29 Our pre-
vious data documented that BBR could ameliorate I/R
injury in non-steatotic grafts undergoing liver transplanta-
tion via activating Sirt1/FoxO3a pathway.22 In the present
study, BBR attenuated the pathological damage and
reduced the expression of plasma liver enzymes compared
with HFDþLT group. The oxidative stress and inflamma-
tion were also inhibited at the same time. These data

Figure 7. BBR reduced the co-localization of ER (KDEL) and autophagy (LC3B) by double-immunofluorescence microscopy. Hepatic samples were labeled with

autophagy marker LC3B (green) and ER marker KDEL (red). Nuclei were stained with DAPI (blue). Then the co-localization of ER and autophagy was detected under

fluorescence microscope (400�magnification). (A color version of this figure is available in the online journal.)
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confirmed the protective effects of BBR against steatotic
liver transplantation.

ER is essential for maintaining the homeostasis of intra-
cellular calcium and lipid metabolism. Under stress condi-
tions, the UPR would be induced or exacerbated, which
augments I/R injury of multiple organs.30,31 In the model
of myocardial I/R injury of rats, BBR inhibited ER stress via
activating JAK2/STAT3 pathway.6 ER stress also occurs in
both non-steatotic and steatotic donors after liver trans-
plantation and its magnitude is more prolonged and
severe in steatotic grafts.10 Consistent with previous liter-
atures, liver transplantation was sufficient to activate the
expression of ER stress parameters (p-PERK, CHOP, Bip) in
steatotic donors, which could be inhibited by BBR
pretreatment.

Under ER stress, several adaptive mechanisms includ-
ing autophagy can be initiated to restore the metabolic
balance. Accumulated evidences show that controlled
autophagy is seen as a compensatory mechanism following
ER stress,32,33 whereas severe or prolonged autophagy may
deteriorate cellular functions and end in irreversibly
damage.34,35 In our previous work, up-regulation of
autophagy exhibited a pro-survival function after liver
transplantation using non-steatotic donors.22 Interestingly,
steatotic grafts undergoing liver transplantation showed
the aggravated hepatic injury along with a notable increase
of autophagy. Furthermore, BBR exhibited protective effect
on steatotic grafts by down-regulating the expression of
LC3II/LC3I, p62, and Beclin1, which could be abolished
by ER stress inducer TG. Herein, our results implicated
that BBR mediated hepatic protection by inhibiting ER
stress-triggered autophagy.

Among all the autophagic proteins, p62 is the first pro-
tein to recognize ubiquitinylated proteins and connect
ubiquitin noncovalently during autophagy.36 Although a
large body of evidences demonstrate that p62 can be

eliminated under autophagy initiation.37,38 However, in
special cases, the activation of selective autophagy is
dependent on p62 induction. Selective autophagy involves
in the generation of autophagosomes targeting special
organelles including mitochondria (mitophagy), ER (retic-
ulophagy), or ribosomes (ribophagy).39 Chi et al.40 implicat-
ed that thyroid hormone promoted selective autophagy via
enhancing p62 expression, which in turn defended against
hepatotoxicity and carcinogenesis. In Parkinson’s disease
model, the transcription of genes encoding for p62 was
increased following mitophagy induction.41 Our current
study also detected the up-regulation of p62 in steatotic
grafts undergoing liver transplantation. In addition,
under transmission electron microscopy, we noticed the
more autophagosomes with the more severe fragmentation
of ER in steatotic livers subjected to liver transplantation
compared with HFD group. Accordingly, it was reasonable
to postulate that reticulophagy occurred in steatotic grafts
after liver transplantation.

Nonetheless, reticulophagy, the autophagic sequestra-
tion of ER fragments into autophagosomes, can occur in
both yeast and mammalian cells.42 A large proportion of
proteins newly synthesized in ER fail to mature properly
and need to be degraded by autophagy. The observation of
ER-membrane in autophagic vacuoles under electron
micrography provides the strong evidence supporting to
the view. The study from Lennemann et al.43 reported the
protective effects of reticulophagy against Dengue and Zika
viruses, which provided a promising molecular target for
the development of anti-viral drug. However, in kidney
cells exposed to quantum dots, UPR-mediated reticuloph-
agy triggered the renal toxicity.44 In line with the previous
reports, our immunofluorescence staining assays found
that the co-localization between ER tracker (KDEL) and
autophagy marker (LC3B) was increased in steatotic
grafts undergoing liver transplantation. Moreover, the

Figure 8. Effects of BBR on the expression of FAM134B in liver samples by immunohistochemistry (200�magnification). The data were means� standard deviation.

*P<0.05 vs. the SD group, þP< 0.05 vs. the HFD group, &P< 0.05 vs. the HFDþLT group, #P< 0.05 vs. the HFDþBBRþLT group. (A color version of this figure is

available in the online journal.)
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pretreatment with BBR reduced the ER localization with
LC3B, which was countered by TG. FAM134B has been
proven to be the hallmark of ER-phagy which serves as
the cargo receptor binding to autophagy-related proteins
to facilitate ER turnover. Our initial analysis showed that
FAM134B expression was markedly provoked in steatotic
donors after liver transplantation. Pretreatment with BBR
impeded the level of FAM134B, which could be reversed by
TG. Altogether, the above results supported the therapeutic
potential of BBR on steatotic grafts after liver transplanta-
tion via inhibiting ER stress-mediated reticulophagy.

Although it is the first time to report the protective
mechanism of BBR against steatotic liver transplantation,
there are still a number of important questions remaining
unresolved and warranting further research. The regula-
tion of reticulophagy is not simple but involved in many
players. Apart from FAM134B, SEC62 and reticulon 3 have
been identified as the key receptors connecting the ER with
autophagosomal membrane. Our finding preliminarily
confirmed the presence of reticulophagy in steatotic
donors after liver transplantation; the precise functions
and the interplay of these receptors remain unclear and
should be elucidated by further analyses. Additionally,
while we have observed the inhibition of ER stress-
mediated reticulophagy by BBR in steatotic grafts after
liver transplantation, the deeper evaluation of molecular
mechanisms using genetic engineering mice by disrupting
the critical gene expression is in urgent need.

In conclusion, our findings identify that steatotic
liver transplantation-mediated induction of ER stress is
the upstream of reticulophagy response which results
in the aggravation of hepatic injury. BBR exerts the protec-
tive effects on steatotic livers undergoing transplantation
by inhibiting ER stress-mediated reticulophagy, which pro-
vides a new insight into the mechanisms underlying BBR’s
hepatoprotection.
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