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Abstract
Glomerular mesangial cell is the major source of mesangial matrix. Our previous study

demonstrated that store-operated Ca2þ channel signaling suppressed extracellular matrix

protein production by mesangial cells. Recent studies demonstrated that glucagon-like

peptide-1 receptor (GLP-1R) pathway had renoprotective effects. However, the underlying

mechanism(s) remains unclear. The present study was aimed to determine if activation of

GLP-1R decreased extracellular matrix protein production by mesangial cells through upre-

gulation of store-operated Ca2þ function. Experiments were conducted in cultured human

mesangial cells. Liraglutide and exendin 9–39 were used to activate and inhibit GLP-1R,

respectively. Store-operated Ca2þ function was estimated by evaluating the SOC-mediated

Ca2þ entry (SOCE). We found that liraglutide treatment reduced high glucose-stimulated

production of fibronectin and collagen IV. The inhibitory effects of liraglutide were not

observed in the presence of exendin 9–39. Exendin-4, another GLP-1R agonist also blunted

high glucose-stimulated fibronectin and collagen IV production. Treatment of human

mesangial cells with liraglutide for 24 h significantly attenuated the high glucose-induced reduction of Orai1 protein.

Consistently, Ca2þ imaging experiments showed that the inhibition of high glucose on SOCE was significantly attenuated by

liraglutide. However, in the presence of exendin 9–39, liraglutide failed to reverse the high glucose effect. Furthermore, liraglutide

effects on fibronectin and collagen IV protein abundance were significantly attenuated by GSK-7975A, a selective blocker of

store-operated Ca2þ. Taken together, our findings suggest that GLP-1R signaling inhibited high glucose-induced extracellular

matrix protein production in mesangial cells by restoring store-operated Ca2þ function.
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Introduction

About 40% of diabetic patients are affected by diabetic
kidney disease (DKD). The early features of DKD include
expansion of glomerular extracellular matrix (ECM),
which, if not controlled, will develop to glomerulosclerosis

and renal insufficiency, and eventually renal failure.1,2

However, there are no known therapies currently available

that can cure the progressive lesion of glomerular histology

and loss of renal function in DKD. New and effective treat-

ments would, therefore, be a significant advance.
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Glomerular mesangial cells (MCs) are a major cell popula-

tion in glomerulus and also a major source of glomerular

matrix proteins. Dysfunction of MCs is firmly associated

with the development of DKD.3 MCs are the major source

of mesangial matrix and over production of ECM proteins

by MCs leads to glomerular injury in DKD.4 Thus, explo-

ration of molecular pathways inhibiting ECM production

by MCs would help find therapeutic strategies for patients

with DKD.
Ca2þ signaling is an important mechanism for regulating

MC function.5,6 Among diverse Ca2þ signal pathways,
store-operated Ca2þ channel (SOC) signaling is tightly asso-
ciated with many physiological and pathological processes
in MCs.6 SOC is defined as the channel which opens as the
Ca2þ inside the endoplasmic reticulum (ER) is depleted.7

STIM18,9 and Orai110–12 are two essential molecules in the
signaling pathway of SOC. STIM1 in the ER membrane
gates SOC by sensing intraluminal Ca2þ concentration of
the ER. Orai1 is the plasma membrane protein and consti-
tutes SOC channel itself.13,14 Over past 20 years, published
studies have revealed that SOC contributes to MC Ca2þ

signaling stimulated by many hormones and growth fac-
tors.15–19 Recently, we demonstrated that SOC signaling
suppressed ECM protein production by MCs through the
Smad pathways,20–22 suggesting an anti-fibrotic function of
SOC. However, the regulation of SOC in MCs still
remains unclear.

Glucagon-like peptide-1 (GLP-1), mainly produced by
the intestinal L cells, has multiple physiological actions,
including stimulation of insulin secretion and regulation
of glucose metabolism.23 Several agonists of GLP-1 receptor
(GLP-1R) have recently developed for patients with type 2
diabetes to improve glycemic control.24,25 GLP-1R was also
expressed in kidney cells, including MCs and renal tubular
cells.26–28 Increased GLP-1R signaling in kidney had reno-
protective effects in diabetic animals.29–33 For instance,
GLP-1R signaling was reported to ameliorate inflammatory
response and oxidative stress in MCs.30,34 Upregulation of
GLP-1R signaling delayed the DKD progression in male
db/dbmice.35 However, whether GLP-1R pathway regulates
ECM production by MCs and whether SOC mediates the
GLP-1R effects are not known. The present study was
aimed to determine if activation of GLP-1R pathway
decreased MC-derived ECM protein production by upre-
gulating SOC function.

Material and methods

MC culture

Human MCs (HMCs) (Sciencell Research Laboratories, cat-
alog no. 4200) were cultured as described previously.22 In
all experiments except for Ca2þ imaging, when HMCs
reached �80% confluence, the cells were treated with
0.5% FBS overnight to stop growth before various treat-
ments. Cells continued to be incubated with 0.5% FBS
medium during treatments. HMCs only with sub-passage
4–9 were used for study.

Western blot

The protein extracts from HMCs were run in 10% SDS-
PAGE. Proteins were transferred to PVDF membranes.
The primary antibodies used in the present study include
fibronectin (FN) (cat. no. F3648, Sigma-Aldrich, RRID:
AB_476976), collagen IV (Col IV) (cat. no. ab135802,
Abcam, RRID:AB_2773062), Orai1 (cat. no. O8264, Sigma-
Aldrich, RRID:AB_1078883), GLP-1R (cat. no. ab186051,
Abcam, RRID:AB_2731993), and a-tubulin (no. sc-5286,
Santa Cruz Biotechnology, RRID:AB_628411). The
AlphaEaseFC imaging system (Alpha Innotech, San
Leandro, CA) was used to capture target protein bands
which were semi-quantitated using the integrated density
value (IDV). The content of target proteins was normalized
to a-tubulin on the same blot.

Fluorescence assay of [Ca21]i

Intracellular Ca2þ concentration ([Ca2þ]i) was estimated
using dual-excitation wavelength fluorescence of fura 2 as
previously described.36 Cells were loadedwith 2 mM fura-2-
AM (Invitrogen, Grand Island, NY) for 50min at room tem-
perature in dark followed by fura-2-free physiological
saline solution for 20min. The excitation/emission wave-
lengths were 340 and 380-nm (alternately)/510-nm. The
NIS Elements AR software was used to calculate [Ca2þ]i.
Calibrations were performed at each experiment using
5mM ionomycin (for high [Ca2þ]i) and 5mM EGTA (for
low [Ca2þ]i). Cells were initially bathed in physiological
saline solution containing 1mM Ca2þ. The concentrations
of CaCl2 in the Ca2þ-free saline solution and 2mM Ca2þ

saline solution were 0 and 2mM, respectively. The glucose
(D-glucose) concentrations in the saline solutions were
5.6mM for normal glucose (NG) group and 25mM for
HG group, respectively.

Materials

FBS was purchased from Life Technologies (Gibco BRL,
Grand Island). Liraglutide (Cat no: HY-P0014), D-
Mannitol (Cat no: HY-N0378), Exendin 9–39 (Cat no: HY-
P0264), and GSK-7975A (Cat no: HY-12507) were purchased
from MedChemExpress. Cyclopiazonic acid (CPA) was
purchased from Alomone Labs (Cat no: C-750 and Lot no:
C750CS1025). Exendin-4 was purchased from TopScience
(Cat no: T-3967).

Statistical analyses

All summary data were expressed as means� SEM. The
differences among multiple groups were analyzed using
one-way repeated-measures ANOVA followed by
Student–Newman–Keuls test. Comparison of difference
between two groups was performed using the unpaired
Student t-test. The statistically significant level was set at
P< 0.05. All statistical tests were performed using
SigmaStat (Jandel Scientific, San Rafael, CA).
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Results

GLP-1R agonist, liraglutide reduced HG-induced ECM
proteins in HMCs

HG is known to stimulate production of ECM by MCs
during the development of DKD.37 The previous study
from our group also showed that HG treatment significant-
ly increased protein abundance of both FN and Col IV.22 In
the present study, we examined if liraglutide, an agonist of
GLP-1R altered the HG-induced fibrotic response in HMCs.
As shown in Figure 1, HG exposure for twodays signifi-
cantly increased both FN and Col IV protein contents.
These HG effects were blunted by liraglutide with various
degrees at concentrations from 1 to 1000 nM. The inhibitory
effects of liraglutide showed a dose-dependent manner for
FN and Col IV (Figure 1).

Activation of GLP-1R pathway contributed to the
inhibitory effects of liraglutide

To verify if the inhibitory effects of liraglutide on the HG-
stimulated ECM protein production by MCs were mediat-
ed by GLP-1R, we conducted three lines of experiments.
First, we examined if another GLP-1R agonist, exendin-4
could recapitulate liraglutide responses. In agreement
with liraglutide’s effects, exendin-4 (100 nM) significantly
inhibited HG-stimulated production of FN and Col IV by
HMCs (Figure 2(a) to (d)). We then examined the influence
of chronic treatment (twodays) of liraglutide on the
amount of GLP-1R in HMCs. As shown in Figure 2(e)
and (f), incubation with HG for twodays significantly
decreased protein content of GLP-1R. In correspondence

to its inhibitory effects on FN and Col IV, liraglutide signif-
icantly blunted the HG-induced decrease in GLP-1R abun-
dance in a trend of dose-dependent manner. Lastly, we
examined if exendin 9–39, a potent and selective GLP-1R
antagonist could block the liraglutide effects. Similar to the
data shown in Figure 1, treatment of cultured HMCs with
100 nM liraglutide for twodays significantly reduced
HG-induced production of FN and Col IV. However, in
the presence of exendin 9–39, these inhibitory effects of
liraglutide were significantly reduced (Figure 3). Taken
together, these results indicate that upregulation of GLP-
1R pathway inhibited ECM protein production by MCs.

Activation of GLP-1R blunted HG-induced decrease
of Orai1 protein abundance

Orai1 is the channel protein of SOC in many cell
types,13,14including MCs.36,38 We have previously demon-
strated that HG incubation for a time period from 8h to
24h decreased content of Orai1 protein in HMCs.38 In the
present study, we treated HMCs with HG for 24h with and
without liraglutide at different concentrations. As shown in
Figure 4, liraglutide significantly attenuated theHG-induced
reduction of Orai1 protein and the liraglutide effect was dose
dependent. A concentration as low as 10nMwas sufficient to
reverse the HG-effect and completely abolished the HG
response at a concentration of >100nM.

Liraglutide protected SOC function in
HG-treated HMCs

We have previously demonstrated that Orai1 mediated
Ca2þ entry through SOC (SOCE) in MCs and HG treatment
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Figure 1. Liraglutide reduced HG-induced increases of FN and Col IV protein content in cultured HMCs.

Western blot showing the effects of liraglutide at different concentrations on FN and Col IV protein expression. HMCs were incubated in media containing 5.6 mM D-

glucose (NG) or 5.6 mM D-glucoseþ 20 mM mannitol (NGþM) or 25 mM D-glucose (HG) with or without different concentrations of liraglutide for 2 days. (a) and (c)

Representative immunoblots. TB: a-tubulin, loading control. (b) and (d) Summary data. HGþLir1: HGþliraglutide (1 nM); HGþLir10: HGþliraglutide (10 nM);

HGþLir100: HGþliraglutide (100 nM); HGþLir1000: HGþliraglutide (1000 nM). *P< 0.05, **P< 0.01 compared with both NG and NGþM groups. #P< 0.05, ##P< 0.01

versus HG group. &P< 0.05, &&P< 0.01, versus HGþLir1 group. %P< 0.05 versus HGþLir10 group. “n¼8”: No. of independent experiments.
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for one day significantly decreased the Ca2þ influx by
reducing Orai1 protein abundance.36,38 Because liraglutide
prevented HG-induced decrease of Orai1 protein
(Figure 4), we reasoned that the attenuated SOCE by HG
could be reversed by liraglutide treatment. Ca2þ imaging
assay was conducted to assess SOC function in response to
liraglutide treatment. We assessed SOCE response using
the classical Ca2þ re-admission approach described previ-
ously.36,38 CPA, a selective inhibitor of the ER Ca2þ ATPase
was used to activate SOC. Consistent with our previous
study,38 SOCE response was significantly attenuated in
the cells exposed to HG compared to the cells cultured in
NG medium. Importantly, the inhibitory effect of HG was
blunted by liraglutide treatment (100 nM) (Figure 5). These
fura-2 data suggest that liraglutide could reserve SOC func-
tion under deleterious HG environment.

GLP-1R mediated liraglutide effect on Orai1 protein

We have shown biochemical and functional data that lira-
glutide treatment positively regulated SOC protein Orai1

expression (Figure 4) and SOC function (Figure 5). We next
determined whether liraglutide effects were GLP-1R
dependent. In agreement with the results presented in
Figure 4, treatment of cultured HMCs with 100 nM liraglu-
tide for one day significantly attenuated HG-induced
reduction of Orai1 protein content (Figure 6). However, in
the presence of exendin 9–39, a potent and selective GLP-1R
antagonist, liraglutide failed to reverse the HG effect
(Figure 6). These results suggest that liraglutide suppressed
HG-induced Orai1 protein reduction via GLP-1R.

GLP-1R activation antagonized HG-induced ECM
production by activation of SOC in HMCs

We previously demonstrated that SOCE signaling in MCs
was anti-fibrotic.20–22 In the present study, we revealed that
liraglutide blunted HG-stimulated production of FN and
Col IV in cultured HMCs (Figure 1). We also showed that
activation of GLP-1R increased content of SOC channel pro-
tein, Orai1 and importantly SOCE (Figures 4 and 5). We
thereby reasoned that SOC could be an action site
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Figure 2. Exendin-4 inhibited HG-stimulated ECM production and liraglutide blunted HG-reduced abundance of GLP-1R in HMCs.

Western blot showing exendin-4 effect on FN and Col IV production (a–d) and liraglutide effect on GLP-1R protein abundance (e and f) in HMCs. (a) and (c)

Representative blots. HMCs were incubated with medium containing NG or NGþM or HG in the presence or absence of 100 nM exendin-4 for two days. Ex-4:

Exendin-4. TB: a-tubulin. (b) and (d) Summary data from experiments are shown in (a) and (c), respectively. *P< 0.05, **P< 0.01, compared with both NG and NGþM

groups. #P< 0.05 versus HG group. “n¼ 5”: No. of independent experiments. (e) Representative blot. HMCs were cultured in NG or NGþM or HG with or without

liraglutide at different concentrations for two days. (f) Summary data from experiments shown in (e). HGþLir1: HGþliraglutide (1 nM); HGþLir10: HGþliraglutide (10

nM); HGþLir100: HGþliraglutide (100 nM); HGþLir1000: HGþliraglutide (1000 nM). *P< 0.05, **P< 0.01, compared with both NG and NGþM groups. ##P< 0.01

versus HG group. &&P< 0.01 versus HGþLir1 group. %P<0.05, %%P< 0.01 versus HGþLir10 group. “n¼ 8”: No. of independent experiments.
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downstream GLP-1R in the cascade of GLP-1R/ECM inhi-
bition in HMCs. To test this hypothesis, we used GSK-
7975A, a recently identified selective SOC inhibitor by
directly acting on the pore region of the channel39 to inhibit

SOC function. As shown in Figure 7, activation of GLP-1R
by liraglutide (100 nM for twodays) markedly decreased
HG-induced FN and Col IV protein abundance. However,
these responses were significantly abolished by GSK-7975A
(10 mM). These data suggest that the inhibition on ECM
protein production by GLP-1R activation was mediated
by SOC in HMCs.

Discussion

DKD is the major cause of chronic kidney disease, which, if
not controlled, will eventually develop to renal failure.
With a continuous rise in the prevalence and incidence of
DKD, finding an effective therapeutic strategy with mini-
mal adverse effects is a great challenge to healthcare
system. The current therapy for DKD, such as glycemic
control and blood pressure control, improves renal function
only modestly.40 Recently, GLP-1 analogues and GLP-1R
agonists were developed and used in clinic for diabetic
patients. More recently, in addition to lowering blood glu-
cose, GLP-1 analogues were found to have additional reno-
protection.41 For instance, activation of GLP-1R was shown
to ameliorate renal injury and improve renal function in
male db/db mice.35 Recently, GLP-1R was found in kidney
cells, including MCs and an increase in GLP-1R level in
kidney had renal protection in diabetic animals.29–33

Activation of GLP-1R inhibited HG-stimulated expression
of TGF-b1 and connective tissue growth factor in HMCs.42

Furthermore, GLP-1 was shown to attenuate advanced gly-
cation end products-induced inflammation and oxidative
stress in MCs.30,34Although the renal protection of GLP-1R
pathway is evident, the underlying mechanisms for its ben-
eficial effects are not clear. Our results provided evidence
that SOC mediated inhibitory effects of GLP-1R pathway
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on ECM production by MCs. Our findings suggest that
activation of anti-fibrotic SOC signaling in MCs could be
a downstream mechanism underlying GLP-1R-induced
renoprotection in diabetic kidney.

The ubiquitous SOC is involved in multiple functions in
both excitable and non-excitable cells.7 In addition to MCs,
many other GLP-1R present cells, such as renal proximal
tubule cells, pancreatic islet b-cells, hepatocytes, neurons,
also contain SOC.7,43 Whether the GLP-1R/SOC cascade
found in the MCs in the present study can be extended to
GLP-1 associated responses in other type of cells is not
known. In steatotic hepatocytes, activation of GLP-1R by
exendin-4 reversed the inhibition of lipid on SOCE.44

However, in the renal proximal tubular cells, effects of
GLP-1R and SOC signaling are opposite. The former is pro-
tective45 and the latter is deleterious.43 Therefore, upregu-
lation of SOC signaling may not be a general mechanism
mediating effects of activation of GLP-1R pathway in dif-
ferent cell types.

How GLP-1R activation upregulated Orai1 protein
abundance and SOC function is not known from
this study. GLP-1R is Gas-protein coupled receptor,
activation of which initiates the cascade of cyclic AMP
(cAMP)-protein kinase A (PKA).42,46 We speculate that
the GLP-1R effects on Orai1 and SOCE observed in this
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was used as the loading control. (a) Representative blots. (b) Summary data.
**P< 0.01, compared with NG. ##P< 0.01, versus HG. &&P< 0.01 versus

HGþLir. “n¼7”: No. of independent experiments.
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study were attributed to the Orai1 expression-modulated
protein kinases and/or transcription factors associated
with GLP-1R pathway. For instance, the serum-and-
glucocorticoid-inducible-kinase-1 (SGK1) was reported to
increase Orai1 protein content and enhance SOCE in
many cell types.47–50 SGK1 has been demonstrated to be
activated by cAMP-PKA,51,52a pathway downstream of
GLP-1R activation.42,44,46

Another interesting finding is that liraglutide signifi-
cantly reversed HG-induced decrease of GLP-1R protein
abundance in HMCs. It is known that liraglutide functions
as a GLP-1R agonist and stimulates GLP-1 signaling via
receptor binding, followed by activation of the cAMP-
PKA pathway.42,44,46 We found that liraglutide treatment
for twodays also increased amount of GLP-1R in MCs.
Therefore, liraglutide may upregulate GLP-1R signaling
pathway through both acute (activation of GLP-1R) and
chronic (increasing the number of GLP-1R) mechanisms.
In agreement with our observation, one study demonstrat-
ed that in cultured HK-2 cells, liraglutide treatment for 72 h
significantly enhanced GLP-1R mRNA expression.53

However, whether the findings on liraglutide can be
extended to other GLP-1R agonists, such as exendin-4 is
not known and further study is needed.

Previous studies by others demonstrated that the GLP-1
effects involved both GLP-1R-dependent and independent
pathways.54,55 Our findings study suggest that the inhibi-
tion of ECM proteins by GLP-1 analogue (liraglutide) in
kidney MCs was through GLP-1R pathway because block-
ade of GLP-1R by exendin-3 (9–39) significantly abolished
the anti-fibrotic effects of liraglutide. GLP-1R signaling
pathway involves cAMP production and PKA activation.46

This mechanistic pathway also exists in MCs. For instance,
Li et al.42 reported that inhibition of exendin-4 on prolifer-
ation of HMCs was attributed to adenylate cyclase

activation. The present study showed that SOC was also
involved in the GLP-1R signaling in MCs. It would be inter-
esting to further study if the GLP-1R/cAMP and GLP-1R/
SOCE are two independent pathways (in parallel) or in a
common pathway (in serial) in future.

One limitation of this study is lack of animal data to
validate our in vitro findings. Decrease of glomerular
ECM protein production by activation of GLP-1R pathway
has been reported in animal model of DKD.35 Whether the
renoprotective effects of GLP-1R signaling can be blocked
by in vivo inhibition of SOC selectively in MCs will provide
valuable information. However, it is technically difficult to
genetically in vivo manipulate SOC signaling specifically in
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Western blot. Liraglutide effect of reducing HG-induced increase of FN (a and b) or Col IV (c and d) protein abundance in HMCs was abolished by GSK-7975A. HMCs
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MCs because the cells do not have the cell type specific
promoter. Recently, Davis et al.56 established the targeted
nanoparticle/siRNA in vivo delivery system which deliv-
ered siRNAs into MCs with high selectivity in mice. This
novel approach provides a possibility to downregulate
SOC function specifically in MCs in an animal model
of DKD.

In summary, the results from this study suggest that
activation of GLP-1R inhibited ECM protein production
in MCs by increasing Orai1 protein abundance and upre-
gulating SOC function. Therefore, we identified a novel
mechanism underlying the renal protective effects of
GLP-1R pathway. This mechanistic pathway is illustrated
in Figure 8. GLP-1R agonists have been used in clinic to
treat patients with diabetes mellitus. However, their side
effects are noticeable. Understanding the molecular mech-
anisms underlying the general anti-diabetic effects and the
organ/cell type specific protection of the GLP-1R pathway
can help design innovative therapeutic strategies for dia-
betic patients with various complications. Our study indi-
cates that upregulation of GLP-1R/SOCE signaling in MCs
could be an option for patients with DKD.
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