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Abstract
Spectrins are proteins that are responsible for many aspects of cell function and adaptation

to changing environments. Primarily the spectrin-based membrane skeleton maintains cell

membrane integrity and its mechanical properties, together with the cytoskeletal network a

support cell shape. The occurrence of a variety of spectrin isoforms in diverse cellular

environments indicates that it is a multifunctional protein involved in numerous physiological

pathways. Participation of spectrin in cell–cell and cell–extracellular matrix adhesion and

formation of dynamic plasma membrane protrusions and associated signaling events is a

subject of interest for researchers in the fields of cell biology and molecular medicine. In this

mini-review, we focus on data concerning the role of spectrins in cell surface activities such

as adhesion, cell–cell contact, and invadosome formation. We discuss data on different

adhesion proteins that directly or indirectly interact with spectrin repeats. New findings

support the involvement of spectrin in cell adhesion and spreading, formation of lamellipo-

dia, and also the participation in morphogenetic processes, such as eye development,

oogenesis, and angiogenesis. Here, we review the role of spectrin in cell adhesion and

cell–cell contact.
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Spectrin—A multifunctional protein

Originally identified in erythrocytes, spectrins associate
with actin filaments to form a 2D meshwork on the inner
surface of the plasma membrane. In mammalian erythro-
cytes, spectrins exist as large flexible rod-like heterote-
tramers made of a side-to-side assembly of aI and bI
subunits. The tetramers constitute the filaments of the net-
work; they are cross-linked by short actin filaments via the
actin binding site present in b-spectrins. In nucleated cells,
several spectrin isoforms are expressed, emerging from
seven genes, two encoding a-spectrins (aI and aII subunits),
five encoding b-spectrins (bI–bV subunits), and by different
combinations contributing consequently to numerous spec-
trin species presenting their specific cellular expression
patterns in all metazoan cells.1,2 aI- and bI-spectrin are

exclusively expressed in the red blood cells, whereas in
nonerythroid cells, arrangements of aII-spectrin and subu-
nits of bII–bV spectrin are the most common.3 Moreover, in
nucleated cells, the distribution of spectrins is not limited to
the plasma membrane; they have also been identified in
endomembranes of the Golgi complex, cytoplasmic
vesicles, as well as of the nucleus.4

The core structural element of spectrin is a triple-helical
spectrin repeat (A–C helixes). Typically, 20 complete
repeats can be found in a-spectrin and 16 in the b subunits
of spectrin, excluding the longer bV-spectrin subunit which
consists of 29 full repeats. The homolog of this heavy
bV-spectrin subunit is named bH-spectrin in Drosophila
melanogaster and Sma-1 in Caenorhabditis elegans. The a-
and b-spectrin subunits differ from each other by several
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unique domains. The motifs based on the spectrin repeats
are the ankyrin-binding domain of b-spectrin and the olig-
omerization site of a- and b-spectrins. Others, such as actin-
binding domain, EF-hand domain (calcium binding) in
b-spectrins, pleckstrin homology (PH), Src homology 3
(SH3), and CCC region are non-spectrin-repeat structural
motifs.5,6 The PH domain is present only in “long” carboxyl
end isoforms of b-spectrin. The SH3 domain is located
in the ninth repeat of aII-spectrin. The CCC region is
36-residue insert within the a10 repeat unit of aII-spectrin
and is the binding site for calmodulin and the cleavage sites
for both caspases and for calpains7–9 (Figure 1(a)).

Spectrins with these domains are elongated organelle-
sized proteins forming resilient arrays binding integral
membrane proteins (mostly via adaptor peripheral pro-
teins) and phospholipids. Spectrin coupling to ankyrins
and actin links this membrane protein with membrane
lipid bilayer, microfilaments and microtubule skele-
tal systems.2,11

The recent discovery12 of a highly nanostructured and
periodic membrane skeleton in neurons via super-
resolution microscopy13,14 has changed the traditional
view of the spectrin–actin-based membrane skeleton in
mammalian cell types including erythrocytes. According
to the current model, the erythrocyte membrane skeleton
is a 2D triangular network organized by spectrin tetramers
which are linked to junctional complexes containing
short actin filaments, tropomodulin, tropomyosin, protein
4.1 and adducin and their associated proteins, whereas in
major membrane skeleton macrocomplexes ankyrin R with

anion exchanger 1 and other integral proteins are anchored
near the spectrin self-association site1,5,15,16 (Figure 2).
In the spectrin molecule there are particular regions
which bind lipids with high affinity. The PH domain of
some b isoforms is highly specific toward PIP2, and some
spectrin repeats recognizemembranes containing phospha-
tidylserine17 or enriched in phosphatidylethanolamine.18–20

Wolny et al.21 proposed that direct interaction between
ankyrin-sensitive spectrin and PE-rich domains stabilizes
the structure of spectrin-based membrane skeleton.
Recently, Pan et al.10 resolved the membrane skeletal
organization in native erythrocytes using super-resolution
stochastic optical reconstruction microscopy (STORM),
revealing an �80 nm junction-to-junction distance that is
in agreement with relaxed spectrin tetramers (Figure 1(b)).
It also shows that actin filaments and its capping
proteins reside at junctional complexes. A different skeletal
organization occurs in nonerythroid cells. In neuronal
cells it appears as a periodic, 1D lattice of well-defined,
�180–190 nm periodicity.22–27 In this cytoskeletal network,
spectrin tetramers link the adducin-capped actin rings
(Figure 1(c)).

Many reports of red blood cells, mainly those in hered-
itary hemolytic anemia, have evidently determined the
importance of spectrin in supporting cell shape, establish-
ing the physical properties of the cell membrane and
maintaining cell membrane integrity.28–30

In nonerythroid cells, spectrins may participate in the
organization of specialized membrane domains by control-
ling localization and stability of many surface proteins.2,5

Figure 1. Spectrin-based membrane skeleton. (a) Organization of the spectrin tetramers. Spectrins, as flexible long tetramers (�200 nm length when fully extended)

composed of a (filled segments) and b (empty segments) subunits associate side by side then form head-to-head dimer interactions. Each segment represents a

106-amino acid residue repeat unit (folded in a triple a-helical coiled-coil structure). The interconnections of spectrin repeats are thought to be closely associated with

spectrin flexibility. a-Spectrin contains 21 repeats plus a single C-helix at the N terminus. A 60 amino acid residues fragment of the ninth repeat of the a-subunit
represents an SH3 domain. b-Spectrin consists of 16 repeats plus a partial repeat at the C-terminus which contains just two A and B helices. Marked spectrin domains:

PH: pleckstrin homology domain which is present only in “long” carboxyl end isoforms of the b-spectrin domain—except bI isoform; EF: EF-hand domain (calcium

binding). Actin and protein 4.1R binding domain (2 CH domain) is located at the N-terminal end of the b-spectrin. (b) The quasi-triangle network of the erythrocytes

spectrin-based skeleton. Spectrin tetramers are connected by junctional complexes (containing actin filaments, adducing, tropomodulin, and protein 4.1). The edge

length of this network is �80 nm.10 The spectrin-based skeleton of resting erythrocytes is in a relaxed state what may be functionally helpful for the dynamics fully

reversible deformations of the spectrin skeleton during circulation. (c) Periodicity of membrane skeleton in neuronal axons, where spectrin heterotetramers are

connected to actin-based junctional complexes. The spectrin tetramers are spaced along the axon with periodicity of approximately 180–190 nm. This value agrees

with the extended length of spectrin tetramers. The synergistic arrangement of bundling spectrin tetramers by actin rings in the same direction may increase the rigidity

of spectrin tetramers. The lengths of spectrin tetramers in neuronal cells suggest that spectrin is under constant tensile stress. This force may be provided by the

microtubule and neurofilament cytoskeletal systems that jam-pack inside neuronal processes, which are absent in erythrocytes.10(A color version of this figure is

available in the online journal.)

1304 Experimental Biology and Medicine Volume 244 November 2019
...............................................................................................................................................................



As it has been recently reported, the periodic, ruler-like
membrane skeleton based on spectrin and actin serves as
a nanoscale scaffold to mediate physical interactions
between cell types of the neural stem cell lineage.31

The cell-specific repertoire of spectrin subunits encoding
gene defects underlies a new group of disorders, the neu-
ronal spectrinopathies, which includes spectrin-associated
autosomal recessive cerebellar ataxia type 1,32,33 spinocer-
ebellar ataxia type 5,34,35 early infantile epileptic encepha-
lopathy type 5,36,37 West syndrome,38 and serious cardiac
disorders such as congenital arrhythmias, heart failure,
and possibly sudden cardiac death.39 In Drosophila, loss
of b-spectrin has been reported to lead to the loss of
Naþ/Kþ-ATPase from the basolateral domain of epithelial
cells.40 In an extreme case, in mice, it was reported that the
loss of a variant of bII-spectrin led to death in utero.41

These diverse cellular environments found in both
erythroid and nonerythroid cells and the various protein
interactions put spectrin in a multifunctional context with
numerous physiological pathways. Pleiotropic effects of
spectrin dysfunctions likely reflect different roles depend-
ing on the cell type and which particular spectrin molecule
is formed from a and b subunits. In this mini-review we
focus on data concerning the role of spectrins in cell
surface activities such as adhesion, cell–cell contact, and
cell–extracellular matrix interactions (Figure 3).

Spectrin is engaged in cell adhesion via
interaction with proteins involved in
actin dynamics

In the central region of a-spectrin, within repeat 9 between
helix B and C the functional SH3 domain is present.
The SH3 domain, a compact b-barrel made of five antipar-
allel b-strands (PBD ID: 1U06)42 is a common structural
motif often found in proteins involved in signal transduc-
tion and is also related to cell adhesion and migration.

A number of published data indicate that the SH3 spectrin
domain in nonerythroid cells interacts with proteins
involved in actin polymerization and dynamics such as
EVL (Ena-Vasp-like), a member of the enabled/
vasodilatator-stimulated phosphoprotein (Ena/VASP)
family,43 Abi1,44 and proteins of focal adhesion such as
Tes.45 Those interactions of aII-spectrin (via its SH3 domain)
correspond to a linkage within actin and its polymeriza-
tion machinery.

aII-Spectrin may also play a role in the mechanism reg-
ulating the actin machinery through several ligands.
Research conducted by Bialkowska et al.46 indicates a role
for the SH3 domain of spectrin in initiating Rac activation
in the specialized integrin clusters that lead to cell adhesion
and spreading. Furthermore, recent data point to the pos-
sibility that spectrin may regulate the invadosome by con-
trolling integrin mobility in the membrane.47 Invadopodia
are adhesive mechanosensory structures organized with a
central actin-rich core enclosed by an adhesion and scaffold
protein ring. Experimental data revealed that, in addition to
actin, aII-spectrin is also a highly dynamic component of
the invadosomes core. Depletion of aII-spectrin in cells
destabilizes invadosome and reduces its ability to degrade
the extracellular matrix and to stimulate invasion. These
data point to the role played by spectrin in the stability of
the invadosome and to the connection between actin regu-
lation and extracellular matrix digestion.47

Benz et al.48 reported an interaction between aII-spectrin
and VASP which controls cell–cell contacts. Much recent
data have supported this involvement of aII-spectrin in
cell adhesion and spreading as well as in the actin skeleton
organization in melanoma, neuronal, endothelial, fibro-
blast, and lymphocyte cell lines.47,49–51 aII-Spectrin turns
out to be an important factor for nonerythroid cell shape
and cell–matrix adhesion. Depletion of aII-spectrin in dif-
ferent nucleated cells revealed defects in cell adhesion and
lamellipodia formation accompanied with marked

Figure 2. Current model of the red cell membrane. The network of the spectrin skeleton is anchored to the plasma membrane of the erythrocyte via two major

membrane skeleton macrocomplexes and through direct interactions with lipids. The spectrin–actin interaction is modulated by accessory proteins such as protein

4.1, together with dematin, adducin, tropomyosin, and tropomodulin. Their functions are to stabilize the actin–spectrin complex, to maintain actin filament length, and

to bind the spectrin-based network to the transmembrane proteins (glycophorin C, the anion exchanger AE1) via adapter proteins (protein p55 and protein 4.2).

Another major binding site to membrane is mediated via ankyrin, which binds to b-spectrin and the anion exchanger AE1. The Rh/RhAG–ankyrin complex can also be a

link between the red cell membrane and the spectrin-based skeleton. Spectrins also interact directly with phospholipids, membrane components actively confined to

the inner leaflet of the lipid bilayer. GLUT 1: glucose transporter 1; GPA: glycophorin A; GPB: glycophorin B; Rh: rhesus factor; RhAG: Rh-associated glycoprotein,

proteins Duffy; XK: Kell, CD47, LW. (A color version of this figure is available in the online journal.)
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modifications of the actin-based cellular elements, such as
loss of stress fibers and focal contacts. In the WM266 mel-
anoma cell line, partial depletion of aII-spectrin was asso-
ciated with a loss of cell spreading and defective adhesion,
together with a reduced number of focal adhesions, which
appeared less well organized and more irregular than wild
type. These changes resulted in rounded and spiked cell
morphology.51 Down-regulation of aii-spectrin expression
in human neuroblastoma SH-SY5Y cells caused major
changes in neurite morphology and cell shape. Neurites
were thinner and displayed abnormal adhesiveness
during cell migration, and the irregular polygonal cell
shape occurred in parallel with a loss of cortical F-actin
from neuronal cell bodies.49 In research on an aII-spectrin
conditional knock-out mouse model it was demonstrated

that aII-spectrin plays a major role in axon initial segment
assembly and neuronal migration.52 Also aii-spectrin
depletion and the accompanying decrease in b3-integrin
immobilization in a fibroblast MEF cell line was associated
with defects of adhesion and migration. This decrease of
cell migration indicates that targeting of aii-spectrin may be
essential for control of cell invasion.47 Disruption of the
spectrin skeleton organization was associated with a
decrease in the number and dynamics of actin-rich lamelli-
podia and a loss of filopodia extensions upon activation of
spectrin-depleted Jurkat T cells. The presence of spectrin in
immunological synapses suggests that spectrin contributes
to this dynamic of actin filament reorganization, which is
essential for immunological synapse formation.50 In
Drosophila muscle cells, a/bH-spectrin dynamically accu-
mulates and diffuses in the fusogenic synapse, where an
attacking fusion partner invades its receiving partner with
actin-propelled protrusions to promote cell fusion.53

In these fusogenic synapses spectrin exhibits mechanosen-
sitive accumulation, functioning as a cellular fence to
restrict the diffusion of cell-adhesion molecules and as a
cellular filter to constrict invasive protrusions, thereby
increasing the mechanical tension to promote cell mem-
brane fusion.53

Severe alterations of cell spreading and adhesion
have also been observed early in embryonic fibroblasts
from aII-spectrin�/� mice.54 Furthermore, Sptan1�/� mice
died before embryonic day 16 with cardiac and neural mal-
formations. These data indicate that the spectrin–ankyrin
scaffold is crucial in vertebrates for cell spreading, tissue
patterning, and the developing brain and heart, but is not
required for cell viability. Likewise, a study on Drosophila
indicated similar involvement of bH-spectrin in cell adhe-
sion and migration.55

In summary, the roles of spectrin in adhesion, lamellipo-
dia extension, and cell spreading through several ligands
and partners regulating actin dynamics have recently been
strongly highlighted thanks to new data obtained from
examination of a number of different cell models.

Spectrins directly or indirectly interact with
adhesion molecules

Published data indicate that different adhesion proteins
directly or indirectly interact with spectrin repeats
(Table 1). The cytoplasmic tail of the adhesion glycoprotein
Lutheran/basal cell adhesion molecule (Lu/BCAM) inter-
acts with erythroid aI-spectrin.70 Lu/BCAM is a laminin
511/521 unique receptor expressed in red blood cells, endo-
thelial and epithelial tissues, as well as smooth muscle
cells. Spectrin regulates adhesive activity of Lu/BCAM.
As demonstrated by An et al.,75 disruption of interaction
of Lu/BCAM/spectrin in erythrocytes enhances adhesion
of red blood cells to laminin. Likewise, in epithelial
and endothelial cells (ECs) aII-spectrin interacts with
Lu/BCAM and this interaction is required for stress fiber
formation during cell spreading on laminin 511/521.
Spectrin acts as a signal relay between laminin and actin
in which it is involved in actin dynamics.71

Cell adhesion and spreading 
• EVL (43) 
• Abi 1 (44) 
• Tes (45) 
• CAMs (table 1) 
• CHL1 (61) 
• 14-3-3 (58) 

αα/β Spectrin

Cell – cell contact
• VASP (48) 
• LFA1 (50) 
• WASP (87, 88) 
• EVL (43) 
• Actin (91) 
• CD45 (91) 
• E-cadherin (92, 93, 96) 
• catenin (97, 96) 
• ZO-1 i ZO-2 (99, 100) 
• Connexin 43 (102) 
• Adducin (103, 104, 105) 
• PKCδ (104, 105)

Lamelipodia extension 
• VASP (48) 
• EVL (43) 
• LFA1 (50, 91) 
• CD45 (50, 91) 

Morphogenesis 
• Sosie (55)
• Roughest (72, 84) 
• Cadherin (72, 84) 
• Crb (107) 

Figure 3. Involving of spectrin and related proteins in cell adhesion processes.

CAM: cell adhesion molecule; EVL: Ena-Vasp-like; LFA-1: lymphocytes function-

associated antigen 1; VASP: vasodilatator-stimulated phosphoprotein; ZO-1:

zonula occludens 1.
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The next adhesion molecule directly reacting with
bI-spectrin is neural cell adhesion molecule 1. In the mam-
malian nervous system two transmembrane isoforms,
NCAM140 and NCAM180, are present. The NCAM–
spectrin–PKCb2 complex is essential for neurite outgrowth.
Overexpression of NCAM leads to a general increase in the
level of bI-spectrin in hippocampal neurons of mouse brain,
whereas the deficiency of NCAM in these cells results in a
decrease in bI-spectrin levels.56 In addition, there are cell
adhesion molecules that do not contain intracellular
domains but are associated with the plasma membrane
via a glycosylphosphatidylinositol (GPI) anchor. In mouse
hippocampal neurons bI-spectrin interacts with the
GPI-anchored isoform NCAM120.56 Moreover, NCAM–
spectrin complex disassembly results in abnormally
high numbers of perforated postsynaptic densities and
formation of postsynaptic endocytic zones, thus affecting
cell–cell contact.76

The spectrin meshwork regulates the removal of L1
family members from the neuronal cell surface by endocy-
tosis. The intracellular domain of CHL1 (close homolog of
L1) contains a binding site for ezrin77 and also directly
binds to bII-spectrin.61 This ligand-induced clustering of
CHL1 prompted palmitoylation of CHL1 and membrane
raft-dependent remodeling of the CHL1/bII–spectrin com-
plex, accompanied by CHL1 endocytosis in culturedmouse
hippocampal neurons, which is required for CHL1-
dependent neurite outgrowth. Knock-down of bII-spectrin
encoding gene (SPTBN1) expression using targeted siRNA
results in increased endocytosis of CHL1.61 Furthermore, it
was found in human neuroblastoma SH-SY5Y cells that
aii-spectrin is implicated in normal morphology and adhe-
sive properties of neuronal cell bodies and neurites, and in
cell surface expression and organization of adhesion mole-
cule L1.49 Remarkably, aii-spectrin depletion in SH-SY5Y
cells affected L1- but not NCAM-cell surface expression,
and L1 clustering at growth cones. In a recent study,
using super-resolution 3D-STORM, a remarkable align-
ment of the periodic cytoskeletons between abutting cells
at axon–axon and axon–oligodendrocyte contacts was
reported. Some possible candidates to drive this nanoscale

alignment are two adhesionmolecules, neurofascin and cell
adhesion molecule L1 (L1CAM).31

As previously demonstrated, aII- and bII-spectrin
are present in myelinating Schwann cells, where they
contribute to myelination.78,79 While testing mice lacking
bII-spectrin it was observed that glial spectrins may also
contribute to the functions of myelinating glia. Depletion
of bII-spectrin in myelinating glial cells disrupted the para-
nodal cell adhesion complex of glial neurofascin in both
peripheral and central nervous systems, resulting in
muscle weakness and sciatic nerve conduction slowing in
juvenile and middle-aged mice.67 Also, it has been recently
documented that L1 coupling to ankyrin and therefore to
the spectrin–actin skeleton modulates ethanol inhibition of
L1 adhesion and ethanol teratogenesis.80 Furthermore,
aII-spectrin interacts with the protein 14-3-3, which is
engaged in neuronal migration and synaptic plasticity.
This interaction works as a positive/negative switch in
NCAM-dependent neurite outgrowth.58

Many studies show that immunoglobulin superfamily
CAMs control the cytoskeleton. On the other hand, the
cytoskeleton is directly responsible for the regulation
of functions and levels of cell adhesion molecules at
functionally important domains of the plasma membrane
of neurons.81

As mentioned above, aII-spectrin accumulates in spe-
cialized integrin clusters that initiate cell adhesion.46

Binding of LFA-1 integrin (lymphocytes function-
associated antigen 1) on Tcells to ICAM (intercellular adhe-
sion molecule 1, also known as CD54) to antigen-presenting
cells has been shown to provide a second signal for T cell
activation.82 In T cells the polarization of actin toward the
cell contact area is accompanied by recruitment of talin,
which activates LFA-1.83 Spectrin by direct interactions
with VASP indirectly controls activation of talin and in
this way may participate in regulation of LFA-1 integrin
clustering in the IS region50 (Figure 4).

Also data from Drosophila morphogenesis research sug-
gest that during eye morphogenesis the immunoglobulin
superfamily cell adhesion molecule Roughest depends on
bH-spectrin (on segment 33 in bH; homolog to mammalian

Table 1. Examples of cell adhesion molecules, which bind directly or indirectly via linker proteins to spectrins.

Cell adhesion molecule Isoforms of spectrin Interaction (references)

NCAM bI-spectrin Direct56,57

aII-spectrin Via 14.3.3b protein58

L1 Spectrin Via ankyrin B59,60

aII-spectrin Direct61

Neuroglian Spectrin Via ankyrin62,63

CHL1 bII-spectrin Direct61 and via ankyrin64

Neurofascin Spectrin Via ankyrin G59,65,66

bII-spectrin 67

NrCAM Spectrin Via ankyrin68

SynCAM 1 Spectrin Via band 4.1-like protein 3, also called 4.1B69

Lu/B-CAM aI-spectrin Direct70

aII-spectrin Direct71

ICAM aII-spectrin Not shown, via LFA-150

Ig-CAM Roughest bH-spectrin (Drosophila) Direct72 Via annexin B973,74

CHL1: close homolog of L1; ICAM: intercellular adhesion molecule; LFA-1: lymphocytes function-associated antigen 1; NCAM: neural cell adhesion molecule.
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bV-spectrin). Expression of bH33 results in the loss of
interommatidial cells, which leads to fragmentation of the
zonula adherens (ZA) and disruption of the Roughest
molecule. This spectrin genetically and physically interacts
with Roughest, maintaining its distribution. Lee et al.72

have suggested that the apical spectrin membrane skeleton
serves to coordinate the Cadherin-based (ZA) and
Roughest/Ig-CAM adhesion system.84,85 Tjota et al.73 dem-
onstrated that annexin B9 (AnxB9) in Drosophila links to the
bH isoform of spectrin and is involved in intermembrane
adhesion in multivesicular bodies (MVB). AnxB9 depletion
results in increased levels of basolateral bH-spectrin and
MVB markers as well as destruction of the apical–lateral
boundary. Loss of AnxB9 or bH-spectrin function leads to
the redistribution of Drosophila cadherin E to endosomal
vesicles. AnxB9 and bH-spectrin participate in endosomal
trafficking to the MVB and they are essential for maintain-
ing proper segregation of membrane domains.73,86

Asmay be concluded from the above, there is substantial
evidence provided by the literature that various spectrin
isoforms are directly or indirectly involved in interactions
with different adhesion molecules.

Spectrins are involved in cell–cell contact and
morphogenesis

Spectrin is also found in adhesion complexes that regulate
cell–cell contacts. Spectrin interacts with proteins of the
WASP family such as the Wiskott–Aldrich syndrome pro-
tein. It was proven in the 1990s that T cells from patients

with Wiskott–Aldrich syndrome show characteristic cyto-
skeletal defects87 and some impaired functions.88 Proteins
of the VASP and Ena/VASP-like protein (EVL), which
belong to the Ena/VASP family, also play a key role in
remodeling of actin during activation of T cells. They are
important in formation and extension of lamellipodia and
join the adapter ADAP, which participates in LFA-1 integ-
rin clustering.89,90 In T lymphocytes, spectrins can regulate
the localization and activity of actin, CD45, and LFA1-
proteins involved in cell–cell contact and cell signaling.91

Recent studies have shown that spectrins also participate in
cell–cell contact and cell adhesion upon immunological
synapse formation.50 This study emphasizes the regulatory
function of spectrin as a protein engaged in the initial phase
of contact between T cells and antigen-presenting cells.

In epithelial cells, knock-down of either bII-spectrin or
ankyrin G leads to loss of the lateral membrane, increase of
the apical and basal membrane surface, and a change of cell
morphology from columnar to squamous.92,93 These pro-
teins are necessary for the concentration and accumulation
of E-cadherin in epithelial cell–cell contact and the delivery
of phospholipids and proteins to the lateral membrane.92

Loss of minus end capping protein Tmod3 function leads to
destabilization and disassembly of tropomyosin-coated
actin filaments followed by disorganization of the
spectrin-based membrane skeleton on lateral membranes.
Tmod3-capped tropomyosin–actin filaments provide cru-
cial links in the spectrin membrane skeleton of polarized
epithelial cells, enabling the membrane skeleton to main-
tain cell shape.94 Also CAMSAP3 is crucial for epithelial

Figure 4. The role of spectrin in immunological synapse formation. Schema of the immunological synapse (IS) and representative protein interactions in the synaptic

space. In the central SMAC, the T cell receptor (TCR)/CD3 complex interacts with MHC-peptide. The adhesion molecules on the surface of both cells (LFA-1–ICAM-1)

are responsible for the formation and stabilization of the IS, as well as for initiating signal transduction pathways activated by TCR. The distal ring of IS is rich in proteins,

such as CD45 and F-actin controls lamellipodia and filopodia formation. The spectrin through the presence at sites of immunological synapses in T cells and interaction

with actin, CD45 and regulation of LFA-1 integrin clustering, may participate in this dynamic actin-rich process which is essential for immunological synapse formation.

c-SMAC: central-SMAC; d-SMAC: distal-SMAC; ICAM-1: intercellular adhesion molecule1; LFA-1: lymphocytes function-associated antigen 1; p-SMAC: peripheral-

SMAC; SMAC: supramolecular activation cluster. (A color version of this figure is available in the online journal.)
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architecture. CAMSAP3 (also known as Nezha) is a
member of the calmodulin-regulated spectrin-associated
protein (CAMSAP)/Nezha/Patronin family proteins,
which bind and stabilize the ends of microtubules in
epithelial cells. In intestinal epithelial cells, the microtubule
minus-end binding protein CAMSAP3 tethers non-
centrosomal microtubules to the apical cortex, leading to
their longitudinal orientation. These findings demonstrate
that apically localized CAMSAP3 determines proper orien-
tation of microtubules, and in turn disposition/localization
of organelles, in mature mammalian epithelial cells.95

Increased abundance of spectrins was reported in cellu-
lar contacts such as adherens, tight, and gap junctions.
In adherens junctions spectrin directly interacts with the
E-cadherin/b-catenin complex96 or a-catenin.97 Interactions
between TGF-b signaling/ELF(bII) and E-cadherin/
b-catenin mediate tumor suppression,98 which revealed
among other things a loss of cell–cell adhesion in cells of a
bII (ELF)þ/� Smad4þ/� mouse model. The interaction
between ankyrin G that recruits bII-spectrin to E-cadherin–
a-catenin complexes, providing a connection between
E-cadherin and spectrin/actin skeleton, is involved in
morphogenesis of the lateral membrane of kidney epithelial
cells.93 In tight junctions spectrin co-localizes with zonula
occludens 1 (ZO-1)99 and interacts with ZO-2 via 4.1
protein.100 These interactions are also involved in maintain-
ing the epithelial cells,101 whereas in gap junctions a partic-
ular isoform of aII-spectrin (isoform aIIR1) interacts with
connexin 43 and stabilizes this protein, which may suggest
a putative role of spectrin in cell signaling by modulating
cell–cell contact.102

Another member of the spectrin–actin junctional
complex is adducin. This protein via interaction with
bII-spectrin stabilizes preformed lateral membranes of
human bronchial epithelial cells. Depletion of bII-spectrin
resulted in loss of adducin from the lateral membrane. Abdi
and Bennett103 found that adducin functions to stabilize
and promote long-range organization of the lateral mem-
brane, in contrast to bII-spectrin and ankyrin G, which are
required for formation of the lateral membrane. They con-
cluded that adducin acting through spectrin provided a
novel mechanism to regulate global properties of the lateral
membrane of bronchial epithelial cells. Wu et al.104 sug-
gested that Ca2þ plays an important role in regulating
the expression and function of b-adducin to sustain
normal organization of the spectrin-based cytoskeleton
and the differentiation properties in keratinocytes through
the calmodulin/EGFR/cadherin signaling pathway. They
observed that siRNA transfection of b-adducin in differen-
tiating keratinocytes resulted in significant reduction of
not only b-adducin protein, but also spectrin and PKCd
proteins. It led to disruption of the spectrin-based skeleton
and the abnormal cytoskeletal arrangements of both addu-
cin and PKCd in keratinocytes.105 The above-mentioned
data and new findings reveal a novel function of adducin
as a negative regulator of non-small cell lung cancer
cell migration and invasion, which could be essential for
limiting lung cancer progression and metastasis.106

Recent research has demonstrated that spectrins also
participate in biological processes, among them in

morphogenesis. Urwyler et al.55 reported that cortical bH-
spectrin mediates some of the functions of sosie, which is a
novel gene required in various morphogenetic processes in
Drosophila oogenesis. sosie contributes to normal cortical
localization of bH-spectrin, interacts with bH-spectrin and
is required for normal localization of spectrin. It is involved
in maintenance of the structure of the spectrin and actin
skeletons during oogenesis.

Chen et al.107 found that spectrins (a- and b-spectrins) are
required for controlling photoreceptor morphogenesis in
Drosophila via modulations of cell membrane domains. The
spectrins are dispensable for retinal differentiation in eye
imaginal discs during the larval stage. They are specifically
required for photoreceptor polarity during pupal eye devel-
opment. The authors show that overexpression of b-spectrin
causes strong shrinkage of apical membrane domains, while
loss of b-spectrin causes an expansion of apical domains,
implying an antagonistic relationship between b-spectrin
and bH-spectrin. bH-spectrin localizes apically, whereas
b-spectrin is preferentially distributed in the basolateral
region. a/b-spectrins are essential for the apical and baso-
lateral membrane compartment modulations and for the
morphogenesis of the developing photoreceptors.

Machnicka et al. have made the similar observation that
aII-spectrin appears to be involved in the expression of
proteins closely involved in angiogenesis in physiological
as well as in pathological conditions in an EC model and an
in vitro model of angiogenesis (unpublished data). It was
found that aII-spectrin is involved in cell integrity, actin
remodeling and cell adhesion and spreading in the primary
human umbilical vein endothelial cells as well as in the
HMEC-1 EC line. Moreover, a deficiency in aII-spectrin
may affect complex mechanisms such as in vitro capillary
tube formation, a dynamic process mimicking angiogene-
sis. These findings support the participation of aII-spectrin
in angiogenesis by modulating integrins and adhesion mol-
ecules, highlighting a new crucial function of aII-spectrin in
regulation of angiogenesis.

The above-mentioned data indicate involvement of
spectrin not only in cell–cell and cell–extracellular matrix
interactions, but also in morphogenesis, which at least in
part is related to its interactions with adhesion molecules
and with membrane proteins (and perhaps lipids) and/or
with elements of actin or microtubular systems. Also some
of those interactions may participate in signal transduction,
and some signal transduction pathway proteins may be
regulated by interactions with spectrins.

Conclusion

Spectrins are proteins that are responsible formany aspects of
the function of cells and their adaptation to changing environ-
ments. Primarily the spectrin-dependent cytoskeleton sup-
ports cell shape and maintains cell membrane integrity and
its mechanical properties. It is involved in cell architecture,
morphology, and plasma membrane stability. Additionally,
spectrins play multiple roles in cell physiology. They function
as an interface for signal transduction mediation and interact
withmembrane channels, adhesionmolecules, receptors, and
transporters. They are involved in cell adhesion, lamellipodia
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extension, and cell spreading through several ligands and
partners regulating actin dynamics. In most cells spectrins
are known to be engaged in cell–cell contact. New findings
support the participation of spectrins in the processes of
angiogenesis and morphogenesis.
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JC, Stevanin G, Dürr A, Zühlke C, Bürk K, Clark HB, Brice A,

Rothstein JD, Schut LJ, Day JW, Ranum LP. Spectrin mutations

cause spinocerebellar ataxia type 5. Nat Genet 2006;38:184–90
35. Perkins EM, Clarkson YL, Sabatier N, Longhurst DM, Millward CP,

Jack J, Toraiwa J, Watanabe M, Rothstein JD, Lyndon AR, Wyllie DJ,

Dutia MB, Jackson M. Loss of -III spectrin leads to Purkinje cell dys-

function recapitulating the behavior and neuropathology of spinocer-

ebellar ataxia type 5 in humans. J Neurosci 2010;30:4857–67
36. Wang Y, Ji T, Nelson AD, Glanowska K, Murphy GG, Jenkins PM,
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