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Impact statement

Immunotherapy as a field has dramatically
expanded in the last decade in the area of
oncology with efficacy demonstrated by
PD-1, PD-L1, and CTLA-4 blockade. With
all three “checkpoint blockade” receptors
being in the B7-CD28 family, there has
been increased interest in targeting other
members in this family due to redundancy
in immune regulation, i.e., the combination
of therapeutic agents targeting multiple co-
inhibitory receptors may yield additional
antitumor efficacy. Therefore significant
resources are being dedicated to devel-
oping additional B7-CD28 treat-

ment options.

Abstract

With the emergence of immuno-oncology, new therapeutic agents that modulate immune
activation and regulation are being used to treat cancer patients with durable response. It is
well known that following T-cell receptor (TCR) activation, many co-receptors can augment
or suppress the TCR signal, and therapeutically targeting these co-receptors has proven
effective. The B7-CD28 family is comprised of such immune-regulatory receptors, and
antibodies against its members programmed cell death protein 1 (PD-1), programmed
death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have
revolutionized cancer treatment. These therapies promote an immune response against
tumor cells, which demonstrated better long-term survival and tolerability compared to
traditional cancer treatments. In this review we describe the history of the expanding
B7-CD28 family, and by comparison of sequence and structure reveal that it is a non-

traditional family. The family has grown to include proteins that share low sequence identity, generally grouped by regulation
of immune response, which utilize the common immunoglobulin fold. This low level of commonality has provided additional
challenges to the drug discovery process as the mechanisms and therapeutic potency between family members can vary greatly.
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Introduction

An effective, durable, and non-self-immune response is
essential for maintaining human health. To achieve this bal-
ance and be adaptable, the immune system consists of var-
ious cell types that work in concert to evoke the appropriate
response. For example, the B-cell response focuses predom-
inantly on extracellular antigens, whereas the CD8 T-cell
response is largely focused on antigens presented by
major histocompatibility complexes. Both responses rely
on initial antigen recognition, then subsequent activity
tuning through co-stimulatory and inhibitory receptors,
along with cytokine signaling. The discovery of these
receptors, and subsequent targeting of inhibitory receptors
for therapeutic benefits has been tremendously impactful
and was highlighted by the 2018 Nobel Prize in Physiology
or Medicine, which was awarded to James Allison and
Tasuku Honjo. This new class of checkpoint inhibitors
enhances the T-cell response to tumor antigens' and tends
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to be more durable than traditional chemotherapy.? This
pioneering work has generated much interest in the
B7-CD28 family, and reviews published in recent years pro-
vide details about the functionality of the B7 and CD28
co-receptor pathways.’” In this review we discuss the
chronology leading to the current definition of the
B7-CD28 family, the sequence identity and structure char-
acteristics of the family, and how its non-classical character-
istics provide challenges to drug discovery.

Chronology of B7-CD28 discoveries led to an
expanding family

The discovery of B7 resulted from efforts to find antibodies
against antigens to allow researchers to classify distinct B
lymphocytes. With its members loosely related by sequence
and function, the B7-CD28 family has gradually expanded
over decades. The initial discovery of B1 (CD20) in 1980°
was quickly followed by B2 (CD21)” B3 (CD22)}°
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B4 (CD19),’ B5," and finally B7 (CD80)."" CD28, previously
identified as a T-cell activator,'? was shown to bind CD80
by demonstrating CD80:CD28-mediated cell adhesion
could be blocked by anti-CD80 and anti-CD28 antibodies."

Not long after, a second receptor competing with CD28
for CD80, cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), was identified."* CTLA-4 had previously been
described as homologous in sequence and structure to
CD28 and both are located on chromosome 2,'° clearly
showing familial relationship, but the biological role of
CTLA-4 was unknown. The picture became more compli-
cated in 1993 when four papers were published within a
day of each other describing a second member of the B7
family, B7-2 (CD86), which also bound both CD28 and
CTLA-4.'® Interestingly, while they have limited sequence
similarity, CD80 and CD86 are located on chromosome 317
Whereas CD80 is expressed on activated antigen presenting
cells (APC), CD86 is constitutively expressed on monocytes
and dendritic cells, and on activated B-cells.'® Meanwhile,
work progressed describing the biological role of CTLA-4,
where it was proposed as a T-cell co-stimulatory molecule
or a suppressing molecule.” It was definitively shown in
mid-1995 that CTLA-4 outcompetes CD28 for CD80/CD86
binding and inhibits T-cell activation.** In early 1999,
inducible T-cell co-stimulator (ICOS), a third CD28-
related molecule was identified and shown to be inducible
on activated T-cells; ICOS induces interleukin (IL)-10 but
not IL-2 as seen with CD28 activation.”® With three related
co-stimulatory molecules that modulate T-cell response
(CD28, CTLA-4, and ICOS) and two identified ligands
(CD80 and CD86), characterization of the B7-CD28 family
seemed relatively clear.

However, the addition of a third B7 member, B7-H1
(programmed cell death protein 1 [PD-L1]), complicated
the definition of the family,®* and expanded possibilities
of what might be included. PD-L1 was initially identified
as a co-stimulatory ligand for T-cells, but was later shown
to be a suppressive when its receptor programmed cell
death protein 1 (PD-1) was discovered.” PD-1 is located
on chromosome 2, but not in the locus shared by CD28,
CTLA-4, and ICOS. Furthermore, PD-L1 is located on chro-
mosome 9, whereas CD80 and CD86 are on chromosome 3.
This series of additions broadened the family, with PD-L1
and PD-1 situated at new chromosomal locations and not
interacting with any previously identified members.
Additions to the family continued as more immunoglobu-
lin (Ig) domain-containing molecules were found, usually
involving APC:T-cell interactions, but sometimes only
broadly related by structure and function. The B7 family
grew to include B7-H2 (ICOSL),* B7-H3 (CD276),” B7-DC
(PD-L2),*® B7-H4 (B7x),” B7-H5 (VISTA),® B7-H6
(NCRLG1),>* and B7-H7 (HHLA2).>> Concurrently,
NKp30 and CD28 homolog (CD28H; TMIGD?2) were iden-
tified as receptors for B7-H6 and B7-H7, respectively, thus
enlarging the CD28 family. Recently, VSIG-3 has been pro-
posed as a receptor for B7-H5.% Receptors for B7-H3 and
B7-H4, and if they are CD28-like (i.e. Ig domains), have yet
to be determined. Through this chronology, we see that the
family has its origins in B-cell characterization, where a
series of discoveries and additions led to the creation of

a family without distinctive features to separate itself
from other Ig-containing receptors that also affect the
immune system.

Sequence homology

A defining characteristic of the B7-CD28 family members is
their ability to modulate the immune response. However,
traditional characteristics that often define a family such as
conserved signaling mechanisms, sequence homology,
structural-similarity, or chromosome location do not
apply across members of this family, except an Ig domain
that is broadly utilized in immune regulation. Lacking
these distinguishing protein features makes it difficult not
only to clearly define the family, but also difficult to predict
potential undiscovered members. Interestingly, B7-H1
(PD-L1) was initially identified as an IgV and IgC contain-
ing protein with low sequence identity to CD80, broadly
expressed and affecting T-cells,** though with more limited
protein expression.** We suppose that this classification
may have led to the growth in the B7-CD28 family as
other Ig-containing “family members” were discovered.
Indeed, by initially naming PD-L1 as B7-H1, PD-1 entered
a group containing CD28, CTLA-4, and ICOS, which are
clearly related molecules that interact with CD80, CD86,
and ICOSL, and share a conserved interface,®® but PD-1
and PD-L1 do not interact with these members.

Most families of homologous proteins have significant
sequence identity, as they potentially derive from a
common ancestor, gaining diversity through gene duplica-
tion and subsequent mutations. Proteins with more than
30% sequence identity have a higher likelihood of being
structurally homologous (90%), and below 25% identity
the chance of being a homolog falls to 10%.%® With high
sequence identity comes more likelihood of being structur-
ally similar, thus potentially conserving any structure-
function relationships. However, B7-CD28 members have
low sequence identity when quantified by globally aligning
their full-length sequences (Figure 1(a)). The overall aver-
age sequence identities among human B7 and CD28 mem-
bers from this alignment is 20% and 18%, respectively. This
is comparable to the 17% sequence identity shared by all Ig
domain sequences (as annotated in PFAM),* indicative of a
level of identity resulting from structural conserva-
tion alone.

The first B7 member discovered was CD80, which
shares 24% identity with CD86, its closest human homolog
(Figure 1(a)). The rest of the human members have an aver-
age of 20% sequence identity compared to CD80.
Comparing each member to all others, human B7-H3 has
the highest average sequence identity of 23%, and B7-H5
has the lowest at 17%. Overall, the two most similar human
proteins are B7-H1 and B7-DC (37%), and the two least
similar are B7-H4 and B7-H5 (14%). Globally, B7 members
have five pairs with sequence identity above 25%, suggest-
ing little homology a priori beyond that of the Ig superfam-
ily (IgSF). Intracellularly, the cytoplasmic tails vary in
length from 1 (B7-H4) to 171 (B7-H6) residues, there is
little evidence a common motif in the tail is widely utilized,
and understanding their role in biology is ongoing.*®
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Figure 1. Full sequence alignment of available B7 and CD28 members. (a) Global alignment of human (h), Rhesus macaque (rh), and Mus musculus (m) B7 members.
(b) Global alignment of human, rhesus, and mouse CD28 members. Number represents percent identity. Alignment performed using ClustalOmega.

A similar trend can be seen when comparing CD28
members (Figure 1(b)), which have an overall average
sequence identity of 18%. CD28 and CTLA-4, the two initial
members, share 30% identity (Figure 1(b)). Homology falls
to 15-23% comparing other human members to CD28.
ICOS has the lowest average sequence identity compared
to other CD28 members at 14%, and CD28 has the highest at

22%. Pairwise, CD28 and CTLA-4 share the highest identity
as mentioned, while PD-1 and ICOS only have 8% identity,
the lowest across all comparisons. Besides the initial mem-
bers, CD28 and CTLA-4, no other receptor pair has identity
greater than 25%. Intracellularly, the cytoplasmic tail range
from 38 to 111 residues, with many members having tyro-
sine signaling motifs.’
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The low sequence homology of B7-CD28 members is in
contrast to a more traditional family like butyrophilin.
Butyrophilin members have been described as B7-like,*
as they modulate the immune response and contain Ig
domains. The family is clustered on chromosome 6, has
an overall 42% sequence identity (unpublished analysis),
and typically contains the B30.2 intracellular domain.*
The lack of similar sequence features among B7-CD28
family members results in difficulties predicting additional
members, potential binding partners, and therapeu-
tic potency.

Structure homology

Protein structure is another feature by which a family can
be classified. Both B7 and CD28 members utilize the
common Ig fold for their extracellular domains (Figure 2
(a)), and belong to the IgSF. The Ig fold is widely utilized
from antibodies to receptors, and is not associated with any

specific biological function. Ig fold can be described as
roughly 100 amino acids, consisting of anti-parallel beta
strands stabilized through a hydrophobic core and a disul-
fide bond. The Ig fold is further classified as IgV, IgC1, or
IgC2 based on strand number and connectivity,*! which are
utilized in B7 and CD28 members, with IgV domains
being involved in receptor and counter-receptor binding
(Figure 2(a)). It should be noted that strand swapping
was observed in some structures of CTLA-4, B7-H4, and
murine B7-H3. This strand swap is a potential artifact of
the protein refolding process or crystallization conditions
and has been observed in other Ig structures, but may also
have a physiological role.**® With the exception of
B7-H5,** B7 members contain at least two Ig domains,
whereas all identified CD28 members consist of a single
Ig domain. Overall the B7 members share a consistent
structural fold and align well (2.4A RMSD), with similar
number and positioning of beta sheets. We do see
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Figure 2. Structural analysis of B7 and CD28 members. (a) Structures of select B7 (gray) and CD28 (green) members. From top to bottom PDB codes: 118L (hCD80:
hCTLA4), 1185 (hCD86:hCTLA4), 1YJD (hCD28), 4ZQK (hPD-1:hPD-L1), 3BP5 (mPD-1:mPD-L2), 40K (mCD276 has two Ig domains; hCD276 has four), 4GOS
(hVTCN1), 3PV6 (hNCR3LG1:NKp30). (b) Comparing IgV domains interaction angle for 4ZQK (hPD-1:hPD-L1), 3BP5 (mPD-1:mPD-L2), 118L (hCD80:hCTLA4), 1185
(hCD86:hCTLA4), and 3PV6 (hnNCR3LG1:NKp30). (c) Beta sheets of aligned B7 members at the counter receptor interface, and specific residues that structurally align
in 3D space. Residues and loops that are in contact with the CD28 members are colored and in bold.



variability in loops that connect the beta sheets, and bend
angle between the two Ig domains. The variability in loop
position is not unexpected as loops are structurally flexible
and could vary from structure to structure. The length of
these loops can also vary, and this is related to sequence
differences. The subtle bend angle differences between the
Ig domains can also be attributed to experimental effects of
structural determination, and may not reflect actual
differences.

This Ig structural fold however is not a distinguishing
feature for B7 members, as there are other receptors with
similar extracellular folds including the butyrophilin
family. The butyrophilin family members contain two Ig
domains, a membrane distal IgV, and overall look similar
to B7 members.*” Members of CD28 consist of a single Ig
fold, and the structural layout is shared with many other
immune receptors such as the T-cell Ig and mucin domain
(TIM) family also having immunological functions.*’
Likewise, the two Ig domain CD200 ligand is broadly
expressed, while its inhibitory receptor CD200R, also com-
posed of two Ig domains, is expressed on myeloid, NK, B-,
and T-cells.*® CD200:CD200R have an interface similar to
the B7-CD28 family.*” These examples demonstrate the ver-
satility of the Ig fold and its prevalence in immunology,
therefore not unique to B7-CD28 members.

The surfaces utilized by B7-CD28 members to interact,
critical for antagonizing therapies blocking the interaction,
are comprised of sidechain interactions from beta strands
and loops at the interface. This is similar to the classic IgV
domain pairing of the variable heavy and light chains of
antibodies that can vary by their packing angle,*® which
dictates the orientation of the two variable domains. In anti-
bodies, this angle impacts how the binding loops are pre-
sented. By aligning and orienting the B7 IgV domains of
complex structures (hPD-L1:hPD-1, mPD-L2:mPD1, CD80:
CTLA-4, CD86:CTLA-4 and NCR3LG1:NKp30), differences
in interface angles are apparent (Figure 2(b)) as previously
described.*” The change in interface angle indicates differ-
ent residues of the IgV domain can be utilized for protein
interactions. The angles observed exhibit how CTLA-4
interacts differently with two closely related molecules,
CD80 and CD86, whereas PD-1 interacts similarly with
both of its ligands. A closer look at the IgV:IgV interface
reveals that certain residues on beta strands C, C/, C”, F,
and G share spatial positioning, but differ in charge and
size of the sidechains, suggesting little is shared at this
interface within the family (Figure 2(c)). This positional
conservation at the interface is only apparent with structur-
al alignment; IgV domain sequence alignment shows an
average percent identity of 22% for B7 and 18% for CD28
members, with different residues aligned at some interface
positions due to low conservation. Taken together, the
available human complex structures show while they
share similar structure, residues at the IgV interface differ
in composition and contacts. This further highlights that
though members are related through use of the Ig fold,
and have beta strand interactions similar to other IgV:IgV
complexes, the family has few consistencies in its
interactions.

Therapeutic considerations

Since the FDA approval of cancer therapies targeting
B7-CD28 family members, anti-CTLA-4 in 2011 and subse-
quent approvals for anti-PD-1 and PD-L1, there has been
tremendous discovery and clinical efforts in reversing
immune suppression. B7-CD28 members are amenable tar-
gets for antibody therapy, as they rely on extracellular
domains to initiate contact and subsequent signaling.
However, dissimilarities within B7-CD28 family members
have made it difficult to utilize insights gained from
research and clinical development targeting the potent
PD-1 and CTLA-4 pathways.

Another important aspect to drug discovery is utilizing
mouse models. As there is low sequence conservation from
human to mouse (Figure 1(a,b)), obtaining cross-species
reactive antibodies can be difficult, but more importantly
this limits the functional relevance of mouse models. For
example there is 50% or less sequence identity between
mouse and human for CD80, CD86 and ICOSL, whereas
human and rhesus share over 90% sequence identity for
these receptors. To further highlight the immunological dif-
ferences of human and mouse, there are no clear functional
mouse orthologues for B7-H6,*! NKp?)O,50 or B7-H7.5!
These differences between mouse and man, and the
dynamics of the immune system, make interpreting and
translating efficacy difficult for checkpoint inhibitors. An
example of this is targeting CTLA-4, where tumor clearance
in mouse has been linked to depletion of intratumoral reg-
ulatory T-cells,” but this mechanism may not be reflected
in the clinic.”

Discussion

While the core B7-CD28 family can be designated as a trio
of related molecules on APC (CD80, CD86, ICOSL) and
their counterparts on T-cells (CD28, CTLA-4, ICOS), the
broad family criteria of regulating an immune response
and containing an Ig fold have led to ever-increasing
growth of the family. To illustrate this, NKp30 was initially
identified on NK cells, without any notable relationship to
the B7-CD28 family.>* A decade later, a previously unanno-
tated gene with a sequence identity “comparable” to other
B7 members, therefore named B7-H6 (NCR3LG1), was
identified as its receptor.®>’ Consequently, NKp30 is now
considered a CD28 member, and understanding its role in
T-cells continues.” Perhaps a more dramatic example that
resulted from lack of similarity among family members is
B- and T-lymphocyte attenuator (BTLA), which was initial-
ly proposed to be related to CTLA-4 and PD-1 with binding
to B7-H4.%° However, it was later revealed that it did not
bind B7-H4 and subsequently BTLA is no longer consid-
ered part of the B7-CD28 family.”” As two B7 members have
not been de-orphanized, there may yet be additional CD28
members. An example of this is the developing story of B7-
H5:VSIG-3, which raises the question of VSIG-3 being
“CD28-like”. With these lax criteria, there may be more
inclusions in the family. This fluidity of B7-CD28 members,
with contractions and expansions, limits biological under-
standing and therapeutic development.
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The overwhelming success of targeting the initial B7-
CD28 members with therapeutic antibodies altered how
cancer is treated. These advances have thrust the complex
and dynamic interactions of immune cells into the spot-
light, and discovery and classification of these diverse
receptors and ligands have created a non-traditional
family. Since members are only related in a broad sense,
additional members have been included based on Ig
domain similarities with little specific functionality in
common. Ultimately, family classifications provide value
in organizing proteins phylogenetically and evaluating
function, but when a family expands without consistency,
this value is diminished.
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