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Abstract
Tissue engineered constructs have the potential to function as in vitro pre-clinical models of normal tissue function and disease

pathogenesis for drug screening and toxicity assessment. Effective high throughput assays demand minimal systems with clearly

defined performance parameters. These systems must accurately model the structure and function of the human organs and their

physiological response to different stimuli. Musculoskeletal tissues present unique challenges in this respect, as they are

load-bearing, matrix-rich tissues whose functionality is intimately connected to the extracellular matrix and its organization. Of

particular clinical importance is the osteochondral junction, the target tissue affected in degenerative joint diseases, such as

osteoarthritis (OA), which consists of hyaline articular cartilage in close interaction with subchondral bone. In this review, we

present an overview of currently available in vitro three-dimensional systems for bone and cartilage tissue engineering that mimic

native physiology, and the utility and limitations of these systems. Specifically, we address the need to combine bone, cartilage

and other tissues to form an interactive microphysiological system (MPS) to fully capture the biological complexity and mechanical

functions of the osteochondral junction of the articular joint. The potential applications of three-dimensional MPSs for musculo-

skeletal biology and medicine are highlighted.
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Introduction. The osteochondral complex

The osteochondral complex of the articular joint is a highly
organized structure formed by hyaline cartilage and sub-
chondral bone, joined at the osteochondral junction1,2

(Figure 1). In cartilage, the uppermost superficial zone is
characterized by squamous chondrocytes with collagen
fibrils aligning parallel to the articular surface. In the
middle/intermediate zone, rounded chondrocytes as well
as collagen fibrils are less organized relative to the surface.
In the deep zone, vertical columns of chondrocytes and
fibrils are organized perpendicular to the articular surface.
The highest concentration of proteoglycans is found in the
deep zone. A wavy tidemark of basophilic matrix high-
lights the boundary between the deep and calcified zones
(Figure 2). Collagen fibrils lengthen from the deep zone to
calcified cartilage passing through the tidemark.3

Mechanically, this region transfers the forces through verti-
cally oriented collagen fibrils.4 The hypertrophic chondro-
cytes in this zone are larger in size and more dispersed.5

Overall, the calcified zone marks the transition from soft

cartilage to stiff subchondral bone and is important for
attaching the non-calcified cartilage to bone. The subchon-

dral bone is interdigitated with calcified cartilage except

that the fibrils do not extend from the calcified zone to the

bone. Immediately below the cartilage, cortical bone exhi-
bits low porosity and vascularity, while the subchondral

trabecular bone contains randomly oriented trabeculae.

This physical linkage between cartilage and bone is a critical
component affected in the pathogenesis of degenerative dis-

eases such as OA.6

In general, bone presents a more heterogeneous cell
population than cartilage,8 comprising osteocytes,
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osteoblasts, and osteoclasts that directly remodel the tissue.
Furthermore, the trabecular pores host the bone marrow,
rich in hematopoietic (HSCs) and mesenchymal stem cells
(MSCs), and act as an adipose depot.6 Bone is vascularized
as well as innervated, and others cells such as neurons and
endothelial cells are also present and may play a relevant
role in bone biology. In fact, it is generally considered that
bone vascularization itself is one of the reasons for the
active self-repair capacity of bone.

Historically, cartilage and bone have been among the
first targets of tissue engineering technologies.9,10 The low
cellular densities and the prominent presence of the extra-
cellular matrix (ECM) have led researchers to experiment
on a variety of structures and scaffolds that could host cells
and mimic the properties of native tissue. The cells of choice
have most often been bone marrow-derived MSCs, and
more recently adipose-derived MSCs.11–13 Both cell types
are relatively easy to access and can differentiate following
established protocols into bone and cartilage. All of these
factors have contributed to the active, ongoing efforts
focused on the development of musculoskeletal tissue
engineering and to a relatively fast track from in vitro to
in vivo animal testing in current cartilage and bone research
practice.14 However, when moving toward a microphysio-
logical system (MPS) approach, the prominence of the ECM
in cartilage and bone tissues has come to represent a major
obstacle as it poses greater challenges to the degree of mini-
aturization, hence of throughput, that is achievable.15,16

Osteoarthritis: a degenerative joint disease
of cartilage and bone

Osteoarthritis (OA) is a chronic, degenerative disease of the
articular joint that involves cartilage, synovium, ligaments,
bone, meniscus, tendon, and peri-articular muscle.17

Figure 1 Structure of the osteochondral complex (modified from Thompson et al.7)

Figure 2 Hematoxylin and eosin (H&E) staining of a section of native osteo-

chondral tissue in which tidemark, calcified cartilage and columnar chondrocytes

are highlighted as prominent features in the osteochondral junction. Bar

¼100mm. (A color version of this figure is available in the online journal.)
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Cartilage destruction is one of the common characteristics
of OA progression and results in malfunction of the affected
joint. Normal articular cartilage is comprised of large
amounts of ECM, produced and maintained by chondro-
cytes, the sole cell type in the cartilage. During disease pro-
gression, net loss of cartilage matrix results from an
imbalance between cartilage matrix degradation and syn-
thesis by chondrocytes in the cartilage.18–20 Currently, there
is no effective therapy for the treatment of OA except for
palliative measures to relieve the symptoms of the diseases
until the joints need to be replaced by surgery. Typical
pharmacological management includes the administration
of non-steroidal anti-inflammatory drugs (NSAIDs), spe-
cific inhibitors of cyclooxygenase-2, and intra-articular cor-
ticosteroid injection.21 However, the underlying structural
damage of the joint is not restored by these treatments.

Both biomechanics and biochemistry play an important
role in OA. Irregularities or perturbations in the joint struc-
ture caused by genetic or environmental factors create
abnormal forces within the joint that are highly correlated
with the development of OA.22,23 More severe stress such as
those found in chronic overuse or joint trauma also contrib-
ute to the etiology of OA,24–26 enhanced by genetic or envir-
onmental factors.27,28 From epidemiological and animal
studies, hallmarks of post-traumatic cartilage damage that
result in OA include cell death/apoptosis, matrix degrad-
ation, alteration of chondrocyte phenotype characterized
by higher proliferative rate, and expression of markers
characteristic for hypertrophy including Runx2 and colla-
gen type X.29,30

This characterization of OA etiology emphasizes the
chondral component of the disease. However, whether
OA begins in the cartilage or the bone and whether sub-
chondral bone or articular cartilage is the best target for
disease modifying OA drug (DMOAD) development, are
subjects of debate. Supporters of the ‘‘bone side’’ of the
debate maintain that, as the ‘‘substrate’’ for articular cartil-
age, subchondral bone plays a supporting role in cartilage
health, and that any perturbations to its structure and com-
position are amplified as pathological conditions and trans-
ferred from bone to cartilage. For example, osteophyte
formation and changes in subchondral bones are seen to
appear before measurable changes in articular cartilage
thickness and related joint space narrowing.31 Another
post-traumatic OA study also linked skeletal changes asso-
ciated with OA and alterations in articular cartilage.32

Similarly, in the Hartley guinea pig model of OA, altered
mechanical properties of subchondral bone precede the
onset of cartilage degradation.33 In the rat anterior cruciate
ligament transection models of OA, increased subchondral
bone resorption is associated with early development of
cartilage lesions.34 Further evidence for the ‘‘bone first’’
theory include findings suggesting that subchondral bone
dysplasia leads to OA.35 For example, abnormal anatomies
of either the femoral head or the acetabulum that interfere
with rotation of the femoral head leads to OA that is treat-
able by periacetabular osteotomy.36,37 Other studies suggest
that healthy subchondral bone is essential for healthy car-
tilage. They also report that chronic overuse and joint
trauma lead to bone bruising, resulting in changed

subchondral bone biomechanical properties that negatively
impact the cartilage above. Furthermore, growing evidence
indicates that, in vivo, cartilage receives nutrients, cytokines,
and hormones through the osteochondral junction, charac-
terized by calcified cartilage and a basophilic tidemark, and
vice versa.38–40 Other studies conclude that changes in sub-
chondral bone gene expression characterize OA,41 and that
inhibitors of bone resorption suppress later cartilage symp-
toms of OA.42

Proponents of the ‘‘cartilage first theory’’ argue that
while early changes to cartilage during OA are clearly
coupled to bone alterations via mechanical and soluble fac-
tors, changes to the bone seem to be secondary to alterations
in articular cartilage.43 Supporting evidence suggests that
OA changes to cartilage alter the mechanical environment
of the bone cells and induce them, in turn, to modulate
tissue structure. Several studies report that thickening of
calcified cartilage along with tidemark advancement con-
tributes to thinning of articular cartilage.44 This leads to
increased mechanical stress in the matrix of the deep zone
of cartilage and contributes to OA cartilage deterioration.45

The evidence for both bone and/or cartilage etiologies,
taken together, thus suggests that OA should be considered
a disease of the osteochondral tissue, if not the entire joint
that includes the synovial lining – mediator of endocrine
signaling, metabolic homeostasis and immune responses
between the articular cartilage and the rest of the body –
and the blood vessels and vasculature within the osseous
environment where vessels may go right up to the cartil-
age.46,47 This etiological origin implies that in vivo and
in vitro studies of OA must include at least a functioning
osteochondral unit, since interactions between both bone
and cartilage are central to disease progression, and that
bone and cartilage can no longer be considered separately
in the study of OA.

We believe that this consideration is not simply an aca-
demic point of view. OA is the most common form of arth-
ritis, a musculoskeletal disease with severe societal burden
that affects an estimated 12–15 million people in the USA
alone. Abnormal mechanical forces are both a cause and a
result of OA, leading to pain, joint impairment, and
decreased mobility. Thus, there is an urgent need for pre-
surgical, medical therapies to prevent or slow the progres-
sion of OA.

In Vitro models of cartilage and bone

The starting point for these microphysiological models is
the preparation of the target tissue in vitro. Although cartil-
age and bone formation are intimately linked during
embryogenesis in endochondral ossification and at the
osteochondral junction, the increasingly reductionistic stu-
dies of the past century have often entailed studying the
development and maintenance of these tissues in isolation.

Chondral tissue

Micromass high density culture of embryonic mesench-
ymal cells. The development of in vitro systems for cartil-
age tissue began in the context of embryology and
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developmental biology. In vitro techniques for the study of
chondrogenic differentiation of embryonic limb bud mes-
enchymal cells from chick or mouse have been available for
more than half a century. Early methods required high-
density confluent monolayer cultures of the cells.48 The
micromass culture method developed by Solursh and col-
leagues49 represented a convenient system for the observa-
tions and analysis of the differentiation processes and
phenomena analogous to those exhibited by the limb cartil-
age anlagen in vivo. In these cultures, isolated embryonic
limb bud mesenchymal cells are plated at 20� 106 cells/mL
in 10–20mL droplets. These cells undergo condensation that
gives rise to cell aggregates that differentiate into cartilage
nodules,50,51 paralleling cartilage formation during embry-
onic limb development in vivo.52–55 For this reason, the
micromass limb bud mesenchyme culture system
(Figure 3) gained great popularity for the analysis of the
mechanisms and regulation of cellular condensation and
differentiation,56–60 maturation of the cartilage anlagen
and, upon treatment with the thyroid hormone triiodothyr-
onine (T3), cartilage hypertrophy61,62 and calcification.63

For example, this system was used in establishing the
importance of ECM and cadherin-mediated cell–cell adhe-
sion in cellular condensation,64,65 TGF-b and BMP signaling
in chondrogenic differentiation,66 the action of BMPs and
WNTs in joint formation,67 and the activity of natriuretic
peptides in chondrocyte hypertrophy.68 The micromass
system is very flexible and has even been used as a platform
for drug testing.69

Cell pellet: high density culture of MSCs. Nearly five dec-
ades ago, Friedenstein et al.70 described a population of
non-HSCs isolated from human bone marrow with the
in vitro ability to adhere, proliferate, and differentiate into
chondrocytes, osteoblasts, and adipocytes. The ease with
which these MSCs undergo skeletogenic differentiation
prompted scientists and physicians alike to employ them
for musculoskeletal engineering. Although MSCs are able
to show signs of differentiation in 2D culture stimulated by
TGF�-superfamily members,71,72 much more robust chon-
drogenesis is observed when the cells are induced to con-
dense within high density droplets or after pelleting by
mild (300� g) centrifugation (Figure 4), like the limb bud
mesenchyme described earlier.73,74 This reflects the import-
ance and utility of the cell-aggregation technique to induce
adult MSC chondrogenesis in vitro, imitating embryonic
prechondrogenic aggregates in vivo. Pellet cultures, i.e.
high density cell aggregates of about 250,000 cells,75 repre-
sent another 3-dimensional (3D) model especially used in
cartilage engineering.

Studies using pellet cultures of human MSCs have been
used to verify that chondrogenic mechanisms for adult
stem cells are similar to those of embryonic cells, but not
identical.76–78 Stimulation of MSC recruitment to articular
cartilage defects by microfracture or implantation of stem
cells in the context of high-density pellets resulted in short-
term hyaline cartilage formation, followed by a slow but
certain conversion to fibrocartilage or calcified cartilage
and eventual degeneration within the joint.79–81

Figure 4 MSC pellet culture. Human bone marrow-derived MSCs were pelleted and cultured in TGF-b1 containing chondrogenic medium for 21 days. Samples were

processed for histology and stained with Safranin O/Fast green. Red staining indicates matrix sulfated glycosaminoglycan deposition. Bar¼250mm in a and 50mm in b.

(A color version of this figure is available in the online journal.)

Figure 3 Limb bud mesenchymal micromass. Embryonic chick limb bud micromass cultured for 21 days and stained with Safranin O/Fast green (Saf O/FG), and

immunostained for collagen type I (Col 1), collagen type II (Col 2), alkaline phosphatase (Alk Phos), and Indian hedgehog (IHH). Bar¼50mm, Inset Bar¼100mm. (A color

version of this figure is available in the online journal.)
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Biomaterial scaffolds: three-dimensional culture of
MSCs. The failure of current cartilage repair surgical pro-
cedures is generally considered to be a consequence of aber-
rant cell differentiation resulting in poor matrix production
and inferior tissue mechanical properties, or in matrix cal-
cification.82 A large number of biomaterials have been
tested for the maintenance and support of human MSC
chondrogenesis in vivo.83,84 These biomaterials include
hydrogels, sponges and fibrils, comprised of natural and
synthetic materials to form biomimetic hierarchical struc-
tures for the support of MSC chondrogenic differentiation
(Figure 5). Hydrogels were among the first materials to be
employed because of the ease of use, high hydration (con-
ferring chondro-supportive mechanical properties), and
potentially chondro-inductive, bioactive epitopes, depend-
ing on the polymer used.85 The confluence of these proper-
ties has proven to be supportive of chondrogenesis in many
contexts, including in vitro differentiation, biomechanical
characterization of cartilage-like tissue, and repair of articu-
lar cartilage defects.86

Encapsulation within inert hydrogels such as agarose or
polyethylene glycol (PEG) itself induces a spherical cyto-
skeletal arrangement conducive to the chondrogenic
phenotype.87,88 In such cultures, chondrocytes maintain
their phenotype, while MSCs show enhanced expression
of the chondrogenic transcription factor, Sox9, and collagen
type II, aggrecan and other ECM molecules, producing a
more functional, mechanically resilient matrix.89,90

Biomimetics has also inspired the use of micro- and nano-
fibers resembling the collagen fibrils so prominent in native
cartilage matrix.91–94 The addition of appropriate growth
factors (TGF�1, TGF�3, BMP6 and IGF)95,96 and appropriate
molecular environments by using gelatin, collagen type II,
hyaluronan, or devitalized cartilage matrix serves to induce
greater and more mature matrix production indicated by
the expression on collagen types IX and XI, proteoglycan
link protein, hyaluronan and other minor proteoglycans in
almost all scaffold types tested.97,98 The addition of uni-
axial, unconfined compression or cyclic hydrostatic pres-
sure increases chondrogenesis and serves as another
critical stimulus to enhance the production and remodeling
of a robust ECM.99–101 Hydrogel combinatorial approaches
have produced the most promising neo-cartilage matrix
while also reducing the production of hypertrophic mar-
kers such as Runx2, collagen type X, and matrix metallo-
proteinase 13 (MMP13).102 The change in chondrocyte

phenotype responsible for this change in matrix and ultim-
ate failure of the constructs in vitro and in vivo remains a
challenge yet to be overcome.

In general, typical hydrogel based cartilage scaffolds can
attain compressive moduli of 0.05–0.25 MPa or aggregate
moduli ranging between 0.02 and 0.12 MPa.103,104 These
compare poorly to the properties of native cartilage:
1–2 MPa compressive and up to 0.85 MPa aggregate
moduli. Given that the articular surface in the human
knee can experience peak loads of 10–12 MPa,105 it is no
surprise that these constructs fail in vivo in long-term stu-
dies. A significant, mostly unmet need is to develop scaf-
folds with sufficient initial mechanical properties to permit
cell survival and tissue development in the challenging
joint environment. The most successful scaffolds of this
type are solid three-dimensional porous matrices106,107 or
woven microfibers.108,109 The composition and porosity of
the solid matrices is created through the use of particulate
leaching, phase separation, or microsphere compaction and
formed through molding or 3D printing techniques. The
addition of certain natural (e.g. chitosan, bioceramics) and
synthetic (e.g. polyvinyl alcohol (PVA)) components easily
provides the mechanical strength to match that of native
cartilage. However, the strength of these scaffolds often
completely shields incorporated cells from mechanical
forces, which have been shown to be critical to cartilage
and bone cell and tissue development and
homeostasis.110,111

Osseous tissue

Micromass: high density culture of osteoblastic
cells. The simplest system for studying osteogenesis is a
micromass of cultured osteoblastic cells in osteogenic
medium, often comprised of 10% serum-containing basal
medium, supplemented with 10 nM b-glycerol phosphate,
50mg/mL ascorbate, and 10 mM dexamethasone.112 1,25-
dihydroxy vitamin D3 is also included in some cultures.
Gene expression, including alkaline phosphatase (ALK),
bone sialoprotein (BSP), collagen type I, osteonectin (ON),
osteopontin (OPN), and osteocalcin (OC), indicates an
advanced degree of osteogenic differentiation.113 Calcium
deposition has also been observed in these systems,
although these cultures do not produce the complex struc-
ture characteristic or cortical and trabecular bone.114

Figure 5 MSCs chondrogenic differentiation in 3D. Human bone marrow derived MSCs were seeded within 1 mg/mL collagen type I gels and cultured for 21 days

with TGF-b1 or TGF-b3 containing chondrogenic medium or control medium. Samples were processed for histology and stained with Safranin O/Fast green staining.

Red staining indicates matrix sulfated glycosaminoglycan deposition. Bar ¼50mm. (A color version of this figure is available in the online journal.)
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Biomaterial scaffold: three-dimensional cultures of
human MSCs for osteogenesis. As generally the engin-
eering of bone has been aimed at direct clinical applicability,
particular stress has been put on materials and structures
that could be both osteoinductive and osteoconductive.115

Furthermore, considering the need for cell infiltration and
vascularization after implant, a great deal of attention has
been put towards generating structure that could couple
mechanical strengths and significant porosity, a major chal-
lenge in itself. Consequently, a host of different scaffolding
approaches can be found in the literature for bone tissue
engineering, exploring different architectures and material
properties.116,117 Some of the most commonly used
approaches are summarized below to illustrate the diver-
sity of the bone biomaterials field.

Calcium phosphate: Inspired by the ground-breaking
observation that de-vitalized bone matrix could stimulate
osteogenesis of encapsulated cells,118 many investigators
have focused on developing scaffolds with material proper-
ties similar to bone, including bone powder or calcium
phosphate in its various forms (hydroxyapatite (HA), b-tri-
calcium phosphate (b-TCP) and/or biphasic calcium phos-
phate (BCP))119,120 as well as ceramics and cements.121–123

The mechanical properties of bone vary between cancellous
and cortical bone. For example, Young’s modulus of cortical
bone is between 15 and 20 GPa and that of cancellous bone
is between 0.1 and 2 GPa, and compressive strength varies
between 100 and 200 MPa for cortical bone, and between 2
and 20 MPa for cancellous bone.124,125 As a consequence,
the scaffolds for bone engineering must have substantial
mechanical strength. Scaffolds comprised of calcium phos-
phate may have compressive strength equivalent to cancel-
lous bone (approximately 10 MPa). A recent study showed
that a combination of macro-porosity (250–350mm) and
micro-porosity (2–8 mm) even resulted in lamellar and
woven bone formation.126,127

Synthetic/natural polymers: Other commonly used syn-
thetic polymers for 3D scaffolds in bone tissue engineering
include poly(lactic acid) (PLA), poly(glycolic acid) (PGA),
poly("-caprolactone) (PCL), and poly(lactic-co-glycolide)
(PLGA), PVA, and poly(propylene fumarate) (PPF).128,129

Among natural polymers, collagen type I and chitosan
are the most commonly used. In contrast to cartilage
engineering where these polymers are often used to form
micro- or nanofibers,130 in bone engineering, rigid 3D
sponges are common.131,132 The pores within the sponge
are formed by various techniques, including molding, ther-
mally induced phase separation, particle leaching, micro-
particle sintering, among others. Optimal bone formation
is obtained with interconnected porosity of 200–300 mm.
The addition of hydroxyapatite crystals within all of
these scaffolds dramatically increases osteogenesis by
cells within the scaffold.133–138 While synthetic polymers
such as PPF have a high compressive strength comparable
to cortical bone, the degradation products of many poly-
mers result in physiologically challenging microenviron-
ments, such as low pH or poorly cleared monomers, that
often induce an undesirable inflammatory response in the
host and potential cell death.

In Vitro modeling of the osteochondral
complex

The osteochondral junction provides a mechanical transi-
tion from the cartilage to bone, and a biochemical barrier
that is severely disrupted in OA. More recently, the osteo-
chondral junctions is being viewed as a channel for com-
munication between the subchondral bone and overlying
cartilage, as in situ studies (including immunohistochemical
and biochemical analyses) have provided evidence that
cytokines, such as HGF, may travel between the subchon-
dral bone and cartilage.139,140 Hence, an engineered osteo-
chondral construct that properly incorporates articular
cartilage, osteochondral interface (calcified cartilage), and
the subchondral bone as an interactive micro-tissue unit
should be of significant utility in elucidating the pathogen-
esis of degenerative joint diseases as well as assessing the
efficacy of potential therapeutics against the disease by
recapitulating the complex signaling occurring across the
junction. In developing such a system, a number of factors
should be taken into account.

Challenges to the development of an
osteochondral MPS

There are several hurdles that must be overcome in
developing an in vitro osteochondral micro-tissue. The
first is the disparate conditions in which these two tissues
develop and exist. Cartilage is bathed in synovial fluid that,
together with the synovial lining of the joint capsule, acts as
an intermediary conduit of biochemical signals and metab-
olites between cartilage and the rest of the body. The cells of
the articular cartilage are embedded in a hydrated visco-
elastic matrix, and joint movement (compressive and tensile
forces) is critical to nutrient and metabolite transport
through the ECM. In addition, as the depth of the cartilage
increases, the oxygen tension dramatically decreases to
2–4% in the deep zones of cartilage, and this presumably
has consequences on cell metabolism and homeosta-
sis.141,142 On the other hand, bone is in immediate contact
with the body vasculature and the bone marrow space. This
environment is normoxic and the matrix is much stiffer.143

Thus, in practice, a biomimetic reproduction of these differ-
ent environments requires dramatically different growth
media and scaffold structure (e.g. porosity) and a close
monitoring of the interface if the changes connected with
OA are to be observed.

The second challenge is achieving the correct balance in
the mechanical properties between the chondral and osse-
ous components of the micro-tissue. Within the musculo-
skeletal system, cartilage distributes load on the joint
surfaces and ensures low friction joint movement, while
bone acts as a load transducer allowing for body movement
and ensures shape maintenance. Each tissue must therefore
possess very different mechanical properties, determined
by their matrix composition, structure and water content.144

The biological relevance of the unique mechanical prop-
erties of the tissue-specific scaffolds becomes evident when
the constructs are mechanically stimulated. It is well estab-
lished in the literature that the homeostasis of both cartilage
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and bone is highly dependent on mechanobiological stimu-
lation, and an imbalance in mechanical properties has
pathological consequences.145,146 This is true for engineered
tissues as well.147,148 Therefore, the third major challenge to
osteochondral tissue development in vitro is the application
of a regimen of mechanical forces, generally in the form of
controlled compression, to the osteochondral construct.
These must be applied in such a manner that cells in each
compartment are anabolically stimulated, which empha-
sizes the importance of the specific mechanical properties
of each compartment. The importance of this is seen in vivo
where the osteoarthritic degeneration of cartilage is often
coincident with the thickening and hardening of the sub-
chondral bone, whereas osteoporosis is coincident with
thickening of articular cartilage.149

Bone and cartilage are connected at the osteochondral
junction that is believed to mediate the interaction of the
subchondral bone and articular cartilage, and it is recently
implicated as a locus of the disease as well as a potential
target of future disease modifying osteoarthritis drugs
(DMOADs).150 It is hypothesized that the formation and
maintenance of this junction are a consequence of the inter-
action of the tissues layers, as a function of the different
structural (scaffold) and biochemical/biophysical (i.e. cyto-
kines, O2 tension, etc.) conditions in which cartilage and
bone exist and of the mechanical environment. The osteo-
chondral junction is characterized by the tidemark, a histo-
logically detectable feature distinguished by strong
basophilic staining that marks the transition to calcified car-
tilage adjacent to the subchondral bone. In healthy joints,
the tidemark is avascular, whereas in OA it is often brea-
ched by the vasculature. Furthermore, in OA the tidemark
is often duplicated and advanced into the normally non-
calcified cartilage itself,151 indicative of a changing relation-
ship between cartilage and bone. Recreating the tidemark
in vitro is probably one of the key challenges in reproducing
the osteochondral complex, but it could represent a crucial
step in understanding the mechanism of cartilage-bone
interaction in OA.

Approaches to recreating the osteochondral junction

As there are limited differentiated cell sources available for
cartilage and bone tissue engineering, MSCs, with their
well-characterized ability to differentiate into chondrocyte-
and osteoblast-like cells, represent a natural candidate cell
source for engineering these tissues.152,153 A large number
of studies have been performed on in vitro engineering of
osteochondral tissues from MSC-seeded scaffolds.
Although the methods of production vary greatly, they
can be generally categorized as single phase constructs
and multiphase constructs by the number of layers initially
employed to induce the formation of osteochondral tissue.
Single phase constructs are composed of a single scaffold
type (such as PVA, chitosan, gelatin) with regional differen-
tiation induced by the seeding or encapsulation of different
cells types (i.e. pre-differentiated MSCs) and by the inclu-
sion of chondro- and osteoinductive agents in a spatially
specific manner. Spatially defined cytokine release can be
achieved through incorporation of the cytokine within the

scaffold (ionically or covalently) or by incorporation of cyto-
kine-laden micro- or nanoparticles.154 In a recent study,
opposing gradients were used to generate an osteochondral
tissue in a single-phase PEG hydrogel, reporting spatially
restricted differentiation and a gradual transition between
chondral and osseous tissues.155 The use of particles is
attractive because the cytokine is protected and the local
concentration can be controlled based upon the degradation
rate of the particle material. In general, the simplicity of a
single-phase scaffold for osteochondral engineering is
appealing. However, hurdles for this technique include
the very different mechanical environments in which the
two tissues optimally develop and the requirement for vas-
cularization (generally promoted by increased porosity) in
the osseous portion of the construct. In some cases, these
challenges have been overcome by varying the construct
stiffness during crosslinking or the construct porosity by
porogen leaching, freeze-drying, gas foaming and direct
3D printing.156

However, the most frequently tested scaffolds for osteo-
chondral engineering are the biphasic constructs that can
provide stiff and porous constructs for osteogenesis and
hydrated, viscoelastic environments for chondrogenesis.157

For instance, for cartilage, scaffold-free layers of cells as
well as cell-laden hydrogels comprised of synthetics (e.g.
PVA),158 proteins (e.g., gelatin, collagen, and hyaluronic
acid),159 glycosaminoglycans (chitosan)160 have been
employed in various forms. For bone, stiffer and porous
scaffolds have been produced using polymers (PCL,
PLLA, PGA, PLGA),161,162 hydroxyapatite or other cer-
amics,163 and metals.164 A popular approach exploits the
mechanical properties of hydroxyapatite but mixes it with
the biomimetic structures formed by polymers, such as
nanofibers, and especially popular in this context are bio-
printing approaches.165 Often, the two phases are fabricated
separately (permitting specific cell seeding to each material)
and subsequently pressed or fused together.157 When pur-
posed for in vivo application, the bone side of the constructs
is often not seeded with cells, relying on the intrinsic heal-
ing capacity of bone and the ability of endogenous osteo-
blasts to populate hydroxyapatite scaffolds.166 However, in
biphasic scaffolds, the different mechanical properties of
the two phases pose a significant risk of the two construct
parts separating once implanted in vivo. In fact, integration
of the layers to form a structural unit represents a major
challenge in biphasic/multiphasic construct fabrication.
The advent of in situ fabrication techniques such as layered
fabrication, and chemical and photo-crosslinking have
served to generate greater cohesion between layers.167

Nevertheless, although after differentiation and maturation
most biphasic constructs exhibit a clear distinction in histo-
chemical reactivity of the chondral and osseous compo-
nents, often the interface is limited to ‘‘a transition’’ from
one phase to the other. A more desirable mimic of the osteo-
chondral junction would include a basophilic boundary
between the two tissues and histomorphometric changes
in chondrocyte organization (i.e. columnar arrangement)
near the boundary.

Towards this goal, triphasic or multiphasic scaffolds
have also been attempted,168 with the intervening layer(s)
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designed as a transition state between the osseous and
chondral phases, upon which trophic factors from the car-
tilage and bone create opposing gradients that can pro-
mote a functional biological osteochondral junction.
Alternatively, bioactive intervening layers have been
attempted using, for instance, platelet-rich plasma
(PRP)169 and MSC-laden collagen.170 One interesting chal-
lenge for these approaches based on MSCs-laden scaffolds
is the idea, put forward by some investigators, that the
chondrocytes of each cartilage zone and the osteochondral
junction have unique developmental histories that cannot
be easily replicated by matrix composition or cytokine gra-
dients alone. In one set of studies, it has been shown that the
cells in each zone produce unique matrices171 and respond
to external stimuli and ECM components in zone-specific
manners.172,173 This suggests that MSC and/or the sur-
rounding matrix and biophysical parameters require more
sophisticated manipulation in order to achieve the zonal
qualities of native articular cartilage and a functional osteo-
chondral unit. Hydrogels with different mechanical proper-
ties systems in combination with advanced fabrication
techniques such as bio-printing and solid free-form fabrica-
tion offer the opportunity to construct scaffolds with zone-
specific properties for better osteochondral engineering. In
any case, the communication of the osseous and chondral
halves of the construct across the transition zone is almost
always an unexplored phenomenon.

While many studies provide microscopic and/or histo-
logical evidence of transition zones,174–177 few studies have
focused on the establishment and functional characteriza-
tion of the inter-tissue signaling at osteochondral interface
in vitro. Studies using co-culture of chondrocytes and osteo-
blasts in 2D Transwell cultures have shown mitotic poten-
tial of chondrocytes mediated via TGFb1 secretion.178 A
more recent study using micromass co-cultures of osteo-
blasts and chondrocytes found both collagen types I and
II at the interface, and the authors suggest that co-cultured
chondrocytes and osteoblasts are capable of forming an
osteochondral-like interface.179 However, how this osteo-
chondral interface is formed – whether it is a result of the
direct cell–cell physical contact or of the paracrine signaling
between the neighboring osteoblast and chondrocyte popu-
lations – and how it is maintained remain undetermined
from the study.

Another recent study generated an osteochondral inter-
face using MSC-seeded collagen microspheres.180 MSCs
seeded in collagen microspheres were first differentiated
into chondrogenic (cartilage-like) and osteogenic (bone-
like) tissues. Then layers of these functional subunits were
separated by a thin interfacial layer of undifferentiated
MSC-collagen gel in a trilayered configuration for 3D co-
culture. The resulting construct showed presence of hyper-
trophic chondrocytes, calcium phosphate deposits, collagen
types II and X, proteoglycans, and vertically running colla-
gen bundles in this interface region. The authors suggested
that the middle undifferentiated MSCs were under influ-
ence from the microenvironment created by the neighbor-
ing osteogenic and chondrogenic layers. The osteogenic
layer was previously shown to secrete BMP2180 that may
stimulate chondrogenic maturation181 and hypertrophy of

MSCs,182 and other soluble factors that might contribute to
the formation of the calcified cartilage in the trilayer co-
culture system. Co-culture with articular cartilage tissue
or derived chondrocytes can also enhance chondrogenesis
of MSCs.183–184 Taken together, these findings suggest that
when undifferentiated MSCs are simultaneously stimulated
by chondrogenic and osteogenic tissue layers, they would
give rise to a calcified cartilage-like interface, and this could
serve as the basis for the in vitro fabrication of a physiolo-
gically relevant osteochondral complex.

In another investigation, cells isolated from OA cartilage
and bone tissues were incubated in the presence or absence
of interleukin-1b, interleukin-6 or oncostatin, factors that
are important in bone remodeling. When compared to
osteoblasts from non-sclerotic zones of human OA sub-
chondral bone, osteoblasts from sclerotic zones induced a
marked decrease in aggrecan gene expression and an
increase in matrix metalloproteinase-3 and -13 gene expres-
sion in chondrocytes from OA cartilage. This strongly sug-
gests that an altered OA osteoblast phenotype contributes
to OA pathology through actions on nearby chondrocytes.

Bioreactors

The experimental findings described above suggest that
communication between chondrocytes and osteoblasts
across the osteochondral junction can play a key role, but
its rigorous elucidation requires an in vitro culture system
that supports native or engineered osseous and chondral
components of an osteochondral unit in a way that commu-
nication between two tissues can be monitored. In fact, most
studies of osteochondral tissue engineering involve the use
of in vivo models of articular surface repair. While the use of
such models can give the impression of translation readi-
ness, it is also a necessity as conventional in vitro culture
systems such as static cultures, spinner flasks, rotating wall
vessels and flow perfusion fail to provide physiological and
mechanical conditions sufficiently close to the in vivo
conditions.

Bioreactors have been developed that attempt to repli-
cate in vivo physiological conditions and permit controlled
manipulation of the system and its critical variables for sci-
entific investigation. The design of a bioreactor changes as
understanding of tissue physiology evolves. In the case of
OA, there is a renewed focus upon the osteochondral unit
and the integrity of the osteochondral junction as a locus of
the disease.150,187 Among the difficulties in culturing the
osteochondral unit, the divergent environments in which
cartilage and bone develop are a particularly relevant one.
As discussed earlier, features such as growth factors and
supplements, oxygen tension and pH, and mechanical
stimulation are known to be both important to histogenesis
and tissue-specific for bone or cartilage. The application of
these variables while maintaining intimate contact between
the developing tissues can benefit greatly from a rationally
designed bioreactor.

As pointed out earlier, complex bioreactors have not
been frequently explored in the development of skeletal
tissues. Bone and cartilage were often studied in isolation.
Bioreactors for living cartilage were often limited to
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different modes of mechanical stimulation of native or
engineered tissues in confined or unconfined conditions.188

These types of studies have revealed the importance of
chondro-inductive forces versus chondro-destructive
forces. The osteochondral plug harvested from an articular
joint specimen has been most commonly employed in
studying the mechanical properties of the articular surface,
because the osteochondral junction and the subchondral
bone are known to confer significant protective mechanical
properties to the overlying cartilage.189,190 Specifically, the
subchondral bone reduces impact-induced fissuring and
reduces chondrocyte cell death and matrix degradation,
all of which are hallmarks of pre-OA cartilage degener-
ation.191,192 Studies of chronic joint overuse have suggested
the involvement of subchondral bone changes in the eti-
ology of OA, but these changes have not been successfully
modeled in vitro.193,194

Early bioreactors specifically for bone were almost non-
existent. Some osteogenic studies were carried out within
the context of HSC and bone marrow cultures in Koller
reactors or similar devices in which osteogenic differenti-
ation was evident, but not the focus of the studies.195,196 As
attempts at bone tissue engineering increased, bioreactors
have been developed primarily aimed at improving cell
seeding, increasing nutrients and oxygen exchange and
metabolite removal,197 and even providing mechanical
stimulation to the seeded cells,198,199 all of which proved
to be important in promoting good osteogenesis.200 The
use of spinner flask bioreactors generally entailed enhanced
expression of osteogenic markers and mineralization.201,202

However, the beneficial effect of increased medium move-
ment is often limited to the outer surface of the construct
where a dense cellular layer forms, impeding efficient
exchange with the inner part of the scaffold.203 Rotating
wall vessels are often considered an improvement over
spinner flasks,204 as the laminar flow generated within the
bioreactor may offer better medium exchange conditions
and a degree of mechanical stimulation to the cells.205,206

Nevertheless, optimal conditions in rotating wall vessels
pose some limitations as they require specific fluid densi-
ties, chamber diameters, and rotational speeds to ensure
both good perfusion and continuous suspension of the con-
structs to avoid damage by bouncing against the vessel
walls.207–209 Nevertheless, perfusion bioreactors offer the
opportunity of mass transport of culture medium through-
out the scaffold, with the continuous supply of nutrients
and oxygen and the removal of metabolites. Furthermore,
they can be used to obtain more uniform cell seeding
throughout the scaffold by suspending cells in the
medium that is continuously circulated through the scaf-
fold.210–212 Overall enhanced cell proliferation, seeding
density, expression of osteogenic markers, and deposition
of mineralized matrix can be achieved by perfusion bioreac-
tors, although this is often dependent on the choice of fluid
flow regimen, e.g. oscillating flow, steady flow,
etc.197,199,213–220

Cell culture within spinner flasks, rotating wall vessels
and perfusion chambers, largely employed homogeneous
cultures of stem cells or osteoblasts. Inclusion of endothelial
cells or promotion of vascularization has been studied

within perfusion chambers implanted in vivo,221 whereas
in vitro studies are still limited but represent the object of
progressively growing interest.222–225

Static cultures, while simple to achieve, suffer significant
set-backs, such as inhomogeneous cell seeding at fabrica-
tion, and poor nutrient and metabolic waste movement
through larger constructs (>2 mm thick). The application
of mechanical loading can improve the nutrient/waste
movement. Optimal loading regimen for 3D cartilage/
chondral construct homeostasis is approximately 2–5%
strain at 1 Hz for >1 h per day, while bone/osseous con-
struct homeostasis is best maintained using 0.1–0.5%
strain at approximately 0.5–2 Hz for >1 h per day. While
these differences can be accommodated within a single
loading device by choosing materials with suitable mech-
anical properties for the chondral and osseous components,
the two tissues are usually still maintained within a
common medium. Recently, a novel loading system was
used to assess the effect of subchondral bone permeability
on overlying cartilage using native porcine osteochondral
tissue.226 While the biochemistry of native samples was
apparently unaffected, restricted permeability of subchon-
dral bone significantly reduced the mechanical properties
of the overlying cartilage. Compared to static culture, con-
structs cultured in spinner flasks or rotating wall vessels
have higher cell densities, more uniform distribution of
cells, and enhanced biochemical and mechanical properties
compared to static cultures.227 This is thought to be a func-
tion of greater nutrient perfusion into the cultured tissues or
scaffolds. Interestingly, the rotating wall vessel culture is
more favorable to chondrogenesis, while the spinner flask
is apparently more favorable for osteogenesis. It is hypothe-
sized that the spinner flask provides predominantly shear
stresses, while the rotating wall vessel creates a hydro-
dynamic environment favorable to chondrogenesis. More
multifunctional bioreactors to culture osteochondral con-
structs or explants have thus been developed with the rec-
ognition that the two tissues exist in very different
environments while being intimately connected to each
other. Instrumentations must be developed that are able
to accommodate the differentiation and maintenance of
tissue-engineered osteochondral constructs.

Flow perfusion bioreactors use a pump to percolate
medium continuously through the scaffold’s intercon-
nected pores, which results in improved mass transfer
through the sample, not just around it because it forces
the medium to flow through the interior of the scaffold.
These systems can be used to ensure uniform cell seeding,
proliferation, and enhancement of biochemical and mech-
anical properties of bone228 and also of cartilage.229

Cartilage constructs grown in flow perfusion reactors accu-
mulated significantly more collagen and proteoglycans and
displayed some evidence of the stratified morphology of
native cartilage. Recently, flow reactors have been used to
culture osteochondral constructs.230 Using such a system,
different effects of perfusion culture upon differentiation or
tissue elaboration by undifferentiated MSCs and prediffer-
entiated chondrocytes and osteocytes were observed. Of
particular interest with respect to the osteochondral
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junction, the authors showed enhanced integration of the
osseous and chondral components of the construct.

There are many techniques with which to form the osteo-
chondral junction, including assembly of predifferentiated
or naı̈ve osteochondral components, the assembly of tissue-
specific scaffolds for chondro- and osteogenesis, and the
utilization of scaffold or growth factor gradients. To accom-
modate these approaches, different bioreactors may be
employed. In the case of the assembly of predifferentiated
or naı̈ve osteochondral components into a bilayered or
multilayered constructs, it is vital that the nutrients and
growth factors be supplied in a spatially restricted way.
Recently, investigators have begun developing in vitro
dual-chamber bioreactors that provide tissue-specific
media for cartilage and bone to the two halves of native
or engineered osteochondral tissues, such as the platform
developed by the authors (Figure 6). In order to test bipha-
sic chitosan-based scaffolds for osteochondral tissue engin-
eering, investigators have employed a silicone septum to
separate simulated body fluid and simulated synovial
fluid to the bone and cartilage components, respectively.231

The effect of mechanical loading of the samples was
assayed as well, as a first attempt at providing the full spec-
trum of tissue-specific growth and mechanical conditions.
Comparisons of constructs grown in homogeneous versus
tissue-specific media were not made; however, the anabolic
effect of mechanical loading of this system was clearly
demonstrated. More recently, a similar system providing
separate tissue-specific growth media was used to assess
the differentiation of MSCs in a biphasic scaffold.232 In the
absence of mechanical stimulation in this system, medium
perfusion was enhanced using magnetic stir bars in each
chamber. Again, no comparison with homogeneous culture
conditions was performed; however, tissue-specific differ-
entiation was observed in the opposing halves of the
construct.

In general, investigators have attempted to isolate the
chondral and osseous portions of the scaffold and feed
them with tissue-appropriate media and supple-
ments,234–236 and added axial237 or both axial and shear
stress238,239 mechanical stimulations. In the case of matrix
or scaffold gradients, the scaffold provides the cues for dif-
ferentiation, and several studies employing predifferen-
tiated cell-laden microspheres in vitro or undifferentiated
stem cells within scaffold gradients fabricated in situ have
reported the formation of osteochondral junctions at the
interface of the cartilage and bone components.240–242 The
advantage of such an approach is that complex multitissue
chambers and microfluidics are not required. Finally,
growth factors and nutrients may be supplied in a gradient
to affect cell differentiation to bone or cartilage and produce
an interfacial osteochondral junction. The bioreactor thus
acts as culture chamber in which media of different formu-
lations are injected at specific locations. While the approach
requires a sophisticated medium delivery system and
chamber, the bioreactor itself could be of relatively simple
design. This particular system has been generated within a
microscale bioreactor on a chip.243

Conclusions

The development of an osteochondral MPS presents a high
utility opportunity to better understand the initiation and
development of osteoarthritis, as it allows to coordinately
study the pathophysiology of bone and cartilage and the
communication between the two tissues. A number of
experimental systems have been developed to focus on
either cartilage or bone, but there is a growing interest on
both developmental models of the osteochondral junction
and tissue engineering model of composite constructs that
can mimic the cartilage/bone unit. For these endeavors to
be successful, a number of hurdles need to be overcome.

Figure 6 Schematics of a multiwell, dual chamber bioreactor system (modified from Lozito et al.233). On the left, a representation of a single bioreactor well. A

removable, non-permeable insert (b) hosts the chondral tissue (d) and the bone tissue (e) constructs. The insert with the osteochondral construct is placed within a well

of the bioreactor platform as shown on the right, and the O-rings (c) seal the separation of the well in an upper and lower chamber. A stream of chondrogenic medium

(yellow) is perfused through the upper compartments in communication with the chondral tissue, while osteogenic medium (orange) is perfused through the lower

chamber in communication with the bone tissue. Sealing is further ensured by a lid (a) equipped with an O-ring (c). On the right, a representation of the multiwell

bioreactor platform for the simultaneous culture of 96 osteochondral constructs. The multiwell platform replicates the well dimensions and arrangement of standard 96-

well tissue culture plates. Representative inserts and sealing lids with O-rings depicted in red are shown. The microfluidics connects eight wells in each column allowing

for averaging of the experimental conditions along each array. (A color version of this figure is available in the online journal.)
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Among these, determining the minimal amount of tissue
necessary to reasonably mimic the native tissue becomes
prominent in a system such as cartilage and bone where
most of the volume in the native tissue is taken up by the
ECM. In general, the specific biological mechanisms under
investigation will determine the level of complexity
required for an in vitro osteochondral MPS. This may vary
from the simplest co-culture systems to complex bioreactors
to generate close-to-native osteochondral constructs, which
may have the capability of incorporating other joint tissues,
such as the synovial lining, the fat pad, or vasculature.

The current growing interest in the use of induced pluri-
potent stem cells (iPSCs), coupled with the most recent
osteochondral MPSs being developed, can offer the exciting
opportunity of generating genuine, high throughput
research platforms to screen candidate therapeutic com-
pounds as well as developing personalized medicine
approaches to musculoskeletal disorders.
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